http://www.lightoj.com/volume_showproblem.php?problem=1341

题意:给你长方形的面积a,边最小为b,问有几种情况。

思路:对a进行素因子分解,再乘法原理算一下,最后减去小于b的因子的情况即可。

/** @Date    : 2016-12-01-19.04
* @Author : Lweleth (SoungEarlf@gmail.com)
* @Link : https://github.com/
* @Version :
*/ #include<bits/stdc++.h>
#define LL long long
#define PII pair<int ,int>
#define MP(x, y) make_pair((x),(y))
#define fi first
#define se second
#define PB(x) push_back((x))
#define MMG(x) memset((x), -1,sizeof(x))
#define MMF(x) memset((x),0,sizeof(x))
#define MMI(x) memset((x), INF, sizeof(x))
using namespace std; const int INF = 0x3f3f3f3f;
const int N = 1e6+20; LL pri[N];
int c = 0;
bool vis[N]; void prime()
{
for(int i = 2; i <= N; i++)
{
if(!vis[i])
{
for(int j = i + i; j <= N; j+= i)
{
if(!vis[j])
vis[j] = 1;
}
pri[c++] = i;
}
}
}
int main()
{
prime();
int T;
int cnt = 0;
cin >> T; while(T--)
{
LL a , b;
scanf("%lld%lld", &a, &b); LL t = a;
LL ans = 1;
LL cc = 0;
if(b > sqrt(a))
{
printf("Case %d: 0\n", ++cnt);
continue;
}
for(int i = 0; i < c && pri[i]*pri[i] <= t; i++)
{
LL cc = 0;
while(t % pri[i] == 0)
{
cc++;
t /= pri[i];
}
ans *= cc + 1;
}
if(t > 1)
ans *= 2; ans /= 2;
for(int i = 1; i < b; i++)
if(a % i == 0)
{
ans--;
} printf("Case %d: %lld\n", ++cnt, ans);
}
return 0;
}

LightOJ 1341 - Aladdin and the Flying Carpet 基本因子分解的更多相关文章

  1. LightOJ 1341 - Aladdin and the Flying Carpet (唯一分解定理 + 素数筛选)

    http://lightoj.com/volume_showproblem.php?problem=1341 Aladdin and the Flying Carpet Time Limit:3000 ...

  2. LightOJ - 1341 Aladdin and the Flying Carpet 唯一分解定理LightOJ 1220Mysterious Bacteria

    题意: ttt 组数据,第一个给定飞毯的面积为 sss,第二个是毯子的最短的边的长度大于等于这个数,毯子是矩形但不是正方形. 思路: 求出 sss 的所有因子,因为不可能是矩形,所以可以除以 222, ...

  3. LightOJ 1341 Aladdin and the Flying Carpet(唯一分解定理)

    http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你矩形的面积(矩形的边长都是正整数),让你求最小的边大于等于b的矩形的个数. 思路 ...

  4. LightOJ 1341 - Aladdin and the Flying Carpet

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1341 题意:给你地毯面积和最小可能边的长度,让你求有几种组合的可能. 题解:这题就厉害 ...

  5. LightOJ 1341 Aladdin and the Flying Carpet【整数分解】

    题目链接: http://lightoj.com/login_main.php?url=volume_showproblem.php?problem=1341 题意: 给定一个数,将其拆分成两个数的乘 ...

  6. [LightOJ 1341] Aladdin and the Flying Carpet (算数基本定理(唯一分解定理))

    题目链接: https://vjudge.net/problem/LightOJ-1341 题目描述: 问有几种边长为整数的矩形面积等于a,且矩形的短边不小于b 算数基本定理的知识点:https:// ...

  7. LightOJ 1341 Aladdin and the Flying Carpet 数学

    题意:给个矩形的面积a,和矩形的最小边长b,问有多少种矩形的方案(不能是正方形) 分析:a可以写成x,y,因为不能是正方形,所以设x<y,那么x<sqrt(a),y>sqrt(a) ...

  8. LightOJ 1341 Aladdin and the Flying Carpet 算数基本定理

    题目大意:给出面积n,和最短边m,求能形成的矩形的个数(不能为正方形). 题目思路:根据算数基本定理有: 1.每个数n都能被分解为:n=p1^a1*p2^a2*^p3^a3……pn^an(p为素数); ...

  9. LightOJ 1341 Aladdin and the Flying Carpet(整数拆分定理)

    分析:题目并不难理解,就是一些细节上的优化需要我们注意,我在没有优化前跑了2000多MS,优化了一些细节后就是400多MS了,之前还TLE了好几次. 方法:将整数拆分为质因子以后,表达为这样的形式,e ...

随机推荐

  1. Python决定一个变量时局部的,还是全局的,是在编译期

    Python中的变量名是在编译时就解析好的,换句话说,在编译时(也就是在交互控制台输入代码是或者import文件时),Python就已经决定一个变量应该是局部变量,还是全局变量.来看下面的例子: &g ...

  2. c# 委托初窥

    1.委托可以把方法当作参数在另一个方法中传递和调用 ,委托是方法的快捷方式. 2.委托是一个类. private void BeginSocketThread() { try { IPEndPoint ...

  3. P4编程环境搭建遇到的问题与解决方法

    在经历了无数的折腾之后,算是折腾,最后采用的是陈翔学长的脚本加上可爱的shell调整装好的. 链接:p4Install 也许是ubuntu18.04的问题,也有可能是我自己把这个系统折腾的有点杂乱的原 ...

  4. 福大软工1816:Alpha(6/10)

    Alpha 冲刺 (6/10) 队名:第三视角 组长博客链接 本次作业链接 团队部分 团队燃尽图 工作情况汇报 张扬(组长) 过去两天完成了哪些任务: 文字/口头描述: 1.组织会议 2.帮助队员解决 ...

  5. Where to go from here

    Did you get through all of that content? Congratulations! You've learnt the fundamentals of algorith ...

  6. lintcode-15-全排列

    全排列 给定一个数字列表,返回其所有可能的排列. 注意事项 你可以假设没有重复数字. 样例 给出一个列表[1,2,3],其全排列为: [ [1,2,3], [1,3,2], [2,1,3], [2,3 ...

  7. Personal summary 个人总结

    一.请回望开学时的第一次作业,你对于软件工程课程的想象 对比开篇博客你对课程目标和期待,"希望通过实践锻炼,增强计算机专业的能力和就业竞争力",对比目前的所学所练所得,在哪些方面达 ...

  8. loadrunner如何监控windows系统的资源

    1.测试客户端与服务器之间的网络,保证通信畅通 2.开启服务器端Windows中的如下两个服务,可见系统服务中查找,cmd输入:services.msc 如下图: Remote Registry需改为 ...

  9. 【Python】面向对象--类的特殊成员方法

    类的特殊成员方法 1. __doc__ 表示类的描述信息 class Func(object): '''__doc__方法是用来打印类的描述信息''' def tell(self): pass def ...

  10. 【Python】PYTHON 函数局部变量和全局变量

    有这样一段PYTHON代码,从事C语言开发的人都知道,如果定义了全局变量,而函数内没有定义同名的函数变量的话,那么在函数内对该变量的赋值就是对全局变量空间数值的修改, 然后在PYTHON中却不尽相同, ...