hdu 4408 Minimum Spanning Tree
Prim algorithm and Kruskal algorithm of minimum spanning tree, XXX finds that
there might be multiple solutions. Given an undirected weighted graph with n
(1<=n<=100) vertexes and m (0<=m<=1000) edges, he wants to know the
number of minimum spanning trees in the graph.
0.
For each case, the first line begins with three integers --- the above
mentioned n, m, and p. The meaning of p will be explained later. Each the
following m lines contains three integers u, v, w (1<=w<=10), which
describes that there is an edge weighted w between vertex u and vertex v( all
vertex are numbered for 1 to n) . It is guaranteed that there are no multiple
edges and no loops in the graph.
representing the number of different minimum spanning trees in the graph.
The
answer may be quite large. You just need to calculate the remainder of the
answer when divided by p (1<=p<=1000000000). p is above mentioned, appears
in the first line of each test case.
#include<vector>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int n,m,mod;
int fa[],ka[];
struct node
{
int u,v,w;
}e[];
int a[][];
bool vis[];
vector<int>g[];
long long ans,C[][],t;
bool cmp(node p,node q)
{
return p.w<q.w;
}
int find(int i,int *f) { return f[i]==i ? i : find(f[i],f); }
bool init()
{
int u,v;
scanf("%d%d%d",&n,&m,&mod);
if(!n) return false;
for(int i=;i<=m;i++) scanf("%d%d%d",&e[i].u,&e[i].v,&e[i].w);
return true;
}
long long det(int h)
{
long long s=;
for(int i=;i<h;i++)
{
for(int j=i+;j<h;j++)
while(C[j][i])
{
t=C[i][i]/C[j][i];
for(int k=i;k<h;k++) C[i][k]=(C[i][k]-C[j][k]*t+mod)%mod;
for(int k=i;k<h;k++) swap(C[i][k],C[j][k]);
s=-s;
}
s=s*C[i][i]%mod;
if(!s) return ;
}
return (s+mod)%mod;
}
void matrix_tree()
{
int len,u,v;
for(int i=;i<=n;i++)
if(vis[i])
{
g[find(i,ka)].push_back(i);
vis[i]=false;
}
for(int i=;i<=n;i++)
if(g[i].size())
{
memset(C,,sizeof(C));
len=g[i].size();
for(int j=;j<len;j++)
for(int k=j+;k<len;k++)
{
u=g[i][j]; v=g[i][k];
if(a[u][v])
{
C[k][j]=(C[j][k]-=a[u][v]);
C[k][k]+=a[u][v]; C[j][j]+=a[u][v];
}
}
ans=ans*det(g[i].size()-)%mod;
for(int j=;j<len;j++) fa[g[i][j]]=i;
}
for(int i=;i<=n;i++)
{
g[i].clear();
ka[i]=find(i,fa);
}
}
void solve()
{
ans=;
int u,v;
memset(a,,sizeof(a));
for(int i=;i<=n;i++) fa[i]=ka[i]=i;
sort(e+,e+m+,cmp);
for(int i=;i<=m+;i++)
{
if(e[i].w!=e[i-].w && i!= || i==m+) matrix_tree();
u=find(e[i].u,fa); v=find(e[i].v,fa);
if(u!=v)
{
vis[u]=vis[v]=true;
ka[find(u,ka)]=find(v,ka);
a[u][v]++; a[v][u]++;
}
}
bool flag=true;
for(int i=;i<n && flag;i++)
if(find(i,fa)!=find(i+,fa)) flag=false;
printf("%lld\n",flag ? ans%mod : );
}
int main()
{
while(init()) solve();
}
’
hdu 4408 Minimum Spanning Tree的更多相关文章
- HDU 4408 Minimum Spanning Tree 最小生成树计数
Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Ot ...
- 【HDU 4408】Minimum Spanning Tree(最小生成树计数)
Problem Description XXX is very interested in algorithm. After learning the Prim algorithm and Krusk ...
- 多校 HDU - 6614 AND Minimum Spanning Tree (二进制)
传送门 AND Minimum Spanning Tree Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 131072/131072 ...
- 数据结构与算法分析–Minimum Spanning Tree(最小生成树)
给定一个无向图,如果他的某个子图中,任意两个顶点都能互相连通并且是一棵树,那么这棵树就叫做生成树(spanning tree). 如果边上有权值,那么使得边权和最小的生成树叫做最小生成树(MST,Mi ...
- Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA/(树链剖分+数据结构) + MST
E. Minimum spanning tree for each edge Connected undirected weighted graph without self-loops and ...
- CF# Educational Codeforces Round 3 E. Minimum spanning tree for each edge
E. Minimum spanning tree for each edge time limit per test 2 seconds memory limit per test 256 megab ...
- Codeforces Educational Codeforces Round 3 E. Minimum spanning tree for each edge LCA链上最大值
E. Minimum spanning tree for each edge 题目连接: http://www.codeforces.com/contest/609/problem/E Descrip ...
- MST(Kruskal’s Minimum Spanning Tree Algorithm)
You may refer to the main idea of MST in graph theory. http://en.wikipedia.org/wiki/Minimum_spanning ...
- [Educational Round 3][Codeforces 609E. Minimum spanning tree for each edge]
这题本来是想放在educational round 3的题解里的,但觉得很有意思就单独拿出来写了 题目链接:609E - Minimum spanning tree for each edge 题目大 ...
随机推荐
- Python高级编程-使用SQLite
SQLite是一种嵌入式数据库,它的数据库就是一个文件.由于SQLite本身是C写的,而且体积很小,所以,经常被集成到各种应用程序中,甚至在iOS和Android的App中都可以集成. Python就 ...
- MySQL用户管理及权限管理
MySQL 默认有个root用户,但是这个用户权限太大,一般只在管理数据库时候才用.如果在项目中要连接 MySQL 数据库,则建议新建一个权限较小的用户来连接. 在 MySQL 命令行模式下输入如下命 ...
- AndroidUI设计之 布局管理器 - 详细解析布局实现
写完博客的总结 : 以前没有弄清楚的概念清晰化 父容器与本容器属性 : android_layout...属性是本容器的属性, 定义在这个布局管理器的LayoutParams内部类中, 每个布局管理器 ...
- python-网易云简单爬虫
一.准备工作 1.使用python3.6和pycharm 2.使用的模块 tkinter .requests .beautifulSoup.getpass.os 3.网易云的榜单页面地址 https: ...
- SQL SERVER技术内幕之8 分组集
分组集就是分组(GROUP BY子句)使用的一组属性,在传统的SQL中,一个聚合查询只能定义一个分组集: 假设现在不想生成4个单独的结果集,而是希望生成一个统一的结果集,其中包含所有4个分组集的聚合 ...
- 面试:谈谈你对Spring框架的理解
Spring是一个优秀的轻量级框架,大大的提高了项目的开发管理与维护.Spring有两个核心模块.一个是IOC,一个是AOP. IOC: 就是控制反转的意思,指的是我们将对象的控制权从应用代码本身转移 ...
- 【python】用 sqlacodegen 将存在的数据库表 转化成model.py
Flask的sqlalchemy对数据库表的模型提供了很多易用的方法.为了使用这些内容,需要将数据库表按照Flask识别的格式创建成Model,但是一般我们都是在已经创建好的数据库环境中开发Pytho ...
- 【Python】python更新数据库脚本两种方法
最近项目的两次版本迭代中,根据业务需求的变化,需要对数据库进行更新,两次分别使用了不同的方式进行更新. 第一种:使用python的MySQLdb模块利用原生的sql语句进行更新 1 import ...
- poj1474 Video Surveillance
题意:求多边形的内核,即:在多边形内部找到某个点,使得从这个点能不受阻碍地看到多边形的所有位置. 只要能看到所有的边,就能看到所有的位置.那么如果我们能够在多边形的内部的点x看到某条边AB,这个点x一 ...
- BZOJ4735 你的生命已如风中残烛(组合数学)
将每个位置上的数都-1,则显然相当于前缀和始终非负. 然后就是完全想不到的了.考虑往里面加一张-1的牌.假设在一个合法排列的最后添上一个-1,那么在该排列的所有循环同构排列中,满足前m个前缀和都非负的 ...