tensorflow训练代码
from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
sess = tf.InteractiveSession() def weight_Variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.1)
return tf.Variable(initial) def bias_Variable(shape):
initial = tf.constant(0.1,shape = shape)
return tf.Variable(initial) def conv2d(input,filter):
return tf.nn.conv2d(input,filter,strides = [1,1,1,1],padding = 'SAME') def max_pool_2x2(input):
return tf.nn.max_pool(input,[1,2,2,1],[1,2,2,1],padding = 'SAME') x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1]) w_conv1 = weight_Variable([5,5,1,32])
b_conv1 = bias_Variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) w_conv2 = weight_Variable([5,5,32,64])
b_conv2 = bias_Variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2) w_fc1 = weight_Variable([7*7*64,1024])
b_fc1 = bias_Variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) w_fc2 = weight_Variable([1024,10])
b_fc2 = bias_Variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_conv),reduction_indices = [1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.global_variables_initializer().run()
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y:batch[1],keep_prob:1.0})
print('step %d,training accuracy %g'%(i,train_accuracy))
train_step.run(feed_dict = {x:batch[0],y:batch[1],keep_prob:0.5}) print('test accuary %g'%accuracy.eval(feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))
tensorflow训练代码的更多相关文章
- TensorFlow 训练好模型参数的保存和恢复代码
TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...
- tensorflow训练线性回归模型
tensorflow安装 tensorflow安装过程不是很顺利,在这里记录一下 环境:Ubuntu 安装 sudo pip install tensorflow 如果出现错误 Could not f ...
- 2、TensorFlow训练MNIST
装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...
- tensorflow训练验证码识别模型
tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: ...
- TensorFlow训练MNIST报错ResourceExhaustedError
title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...
- TensorFlow.训练_资料(有视频)
ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow ...
- 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练
将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...
- 自己搞了20万张图片100个分类,tensorflow训练23万次后。。。。。。
自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次 ...
- tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了
tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 ...
随机推荐
- Quartz.Net定时任务简单实用(实例)
一.Quartz.Net是什么? Quartz.Net是一个定时任务框架 二.有Timer了,为什么需要用Quartz.Net? Quartz.Net比Timer使用起来更灵活.例如:每个月最后一个星 ...
- HTML DOM status 属性
<!DOCTYPE html><html> <head>HTML DOM status 属性</head><body><script ...
- Oracle OCI操作UDT相关学习(二)
沿用 Oracle OCI操作UDT相关学习 一文中定义的类型和表. 1.更改数据 在sqldeveloper 中更新数据, update dxl.cust set addr.street='a11' ...
- 二、redis的配置
# redis 配置文件示例 # 当你需要为某个配置项指定内存大小的时候,必须要带上单位, # 通常的格式就是 1k 5gb 4m 等酱紫: # # 1k => 1000 bytes # 1kb ...
- SQL COUNT DISTINCT
Create table trade ( sell_id int, --卖家 buy_id int, -- 卖家 time date --交易时间 ) sell_id, buy_id, time s ...
- css设置一行显示,超出部分显示...
碰到一些介绍时候需要一行显示,然后超出部分用...替代 white-space: nowrap;不换行显示text-overflow: ellipsis;以...显示overflow: hidden; ...
- Java 多线程使用
工作中遇到的问题,记录下解决的思路 问题: 对磁盘进行碎片化测试(比如说,磁盘空间是16G),从64K开始写文件,写满后删除一半,然后写32K 的数据,写满后删除一半...直到4K写满删除一般算是结束 ...
- 从尾到头打印链表(C++和Python 实现)
(说明:本博客中的题目.题目详细说明及参考代码均摘自 “何海涛<剑指Offer:名企面试官精讲典型编程题>2012年”) 题目 输入一个链表的头结点, 从尾到头反过来打印出每个结点的值. ...
- 【Leetcode】【Medium】Convert Sorted Array to Binary Search Tree
Given an array where elements are sorted in ascending order, convert it to a height balanced BST. 解题 ...
- 正则表达式 (python 2)
Python提供re模块,包含所有正则表达式的功能.由于Python的字符串本身也用\转义,所以要特别注意: s = 'ABC\\-001' # Python的字符串# 对应的正则表达式字符串变成:# ...