from tensorflow.examples.tutorials.mnist import input_data
import tensorflow as tf
mnist = input_data.read_data_sets("MNIST_data/",one_hot = True)
sess = tf.InteractiveSession() def weight_Variable(shape):
initial = tf.truncated_normal(shape,stddev = 0.1)
return tf.Variable(initial) def bias_Variable(shape):
initial = tf.constant(0.1,shape = shape)
return tf.Variable(initial) def conv2d(input,filter):
return tf.nn.conv2d(input,filter,strides = [1,1,1,1],padding = 'SAME') def max_pool_2x2(input):
return tf.nn.max_pool(input,[1,2,2,1],[1,2,2,1],padding = 'SAME') x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])
x_image = tf.reshape(x,[-1,28,28,1]) w_conv1 = weight_Variable([5,5,1,32])
b_conv1 = bias_Variable([32])
h_conv1 = tf.nn.relu(conv2d(x_image,w_conv1)+b_conv1)
h_pool1 = max_pool_2x2(h_conv1) w_conv2 = weight_Variable([5,5,32,64])
b_conv2 = bias_Variable([64])
h_conv2 = tf.nn.relu(conv2d(h_pool1,w_conv2)+b_conv2)
h_pool2 = max_pool_2x2(h_conv2) w_fc1 = weight_Variable([7*7*64,1024])
b_fc1 = bias_Variable([1024])
h_pool2_flat = tf.reshape(h_pool2,[-1,7*7*64])
h_fc1 = tf.nn.relu(tf.matmul(h_pool2_flat,w_fc1)+b_fc1) keep_prob = tf.placeholder(tf.float32)
h_fc1_drop = tf.nn.dropout(h_fc1,keep_prob) w_fc2 = weight_Variable([1024,10])
b_fc2 = bias_Variable([10])
y_conv = tf.nn.softmax(tf.matmul(h_fc1_drop,w_fc2)+b_fc2) cross_entropy = tf.reduce_mean(-tf.reduce_sum(y*tf.log(y_conv),reduction_indices = [1]))
train_step = tf.train.AdamOptimizer(1e-4).minimize(cross_entropy) correct_prediction = tf.equal(tf.argmax(y_conv,1),tf.argmax(y,1))
accuracy = tf.reduce_mean(tf.cast(correct_prediction,tf.float32)) tf.global_variables_initializer().run()
for i in range(20000):
batch = mnist.train.next_batch(50)
if i%100 == 0:
train_accuracy = accuracy.eval(feed_dict = {x:batch[0],y:batch[1],keep_prob:1.0})
print('step %d,training accuracy %g'%(i,train_accuracy))
train_step.run(feed_dict = {x:batch[0],y:batch[1],keep_prob:0.5}) print('test accuary %g'%accuracy.eval(feed_dict={x:mnist.test.images,y:mnist.test.labels,keep_prob:1.0}))

tensorflow训练代码的更多相关文章

  1. TensorFlow 训练好模型参数的保存和恢复代码

    TensorFlow 训练好模型参数的保存和恢复代码,之前就在想模型不应该每次要个结果都要重新训练一遍吧,应该训练一次就可以一直使用吧. TensorFlow 提供了 Saver 类,可以进行保存和恢 ...

  2. tensorflow训练线性回归模型

    tensorflow安装 tensorflow安装过程不是很顺利,在这里记录一下 环境:Ubuntu 安装 sudo pip install tensorflow 如果出现错误 Could not f ...

  3. 2、TensorFlow训练MNIST

    装载自:http://www.tensorfly.cn/tfdoc/tutorials/mnist_beginners.html TensorFlow训练MNIST 这个教程的目标读者是对机器学习和T ...

  4. tensorflow训练验证码识别模型

    tensorflow训练验证码识别模型的样本可以使用captcha生成,captcha在linux中的安装也很简单: pip install captcha 生成验证码: # -*- coding: ...

  5. TensorFlow训练MNIST报错ResourceExhaustedError

    title: TensorFlow训练MNIST报错ResourceExhaustedError date: 2018-04-01 12:35:44 categories: deep learning ...

  6. TensorFlow.训练_资料(有视频)

    ZC:自己训练 的文章 貌似 能度娘出来很多,得 自己弄过才知道哪些个是坑 哪些个好用...(在CSDN文章的右侧 也有列出很多相关的文章链接)(貌似 度娘的关键字是"TensorFlow ...

  7. 目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练

    将目标检测 的标注数据 .xml 转为 tfrecord 的格式用于 TensorFlow 训练. import xml.etree.ElementTree as ET import numpy as ...

  8. 自己搞了20万张图片100个分类,tensorflow训练23万次后。。。。。。

    自己搞了20万张图片100个分类,tensorflow训练23万次后...... 我自己把训练用的一张图片,弄乱之后做了一个预测 100个汉字,20多万张图片,tensorflow CNN训练23万次 ...

  9. tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了

    tensorflow训练了10万次,运行完毕,对这个word2vec终于有点感觉了 感觉它能找到词与词之间的关系,应该可以用来做推荐系统.自动摘要.相关搜索.联想什么的 tensorflow1.1.0 ...

随机推荐

  1. Map.Entry遍历集合中的元素

    Entry是Map中的一个内部累,map.entrySet()可以得到key和value的视图给你一个比较简单的小事例public static void main(String[] args) { ...

  2. 如何制作Win10系统U盘安装镜像

    准备的工具: 1.空间8G以上的U盘一个 2.系统镜像文件(ISO格式)下载:https://msdn.itellyou.cn/ 3.UltraISO 下载:https://cn.ultraiso.n ...

  3. 第2天:JavaScript基础(运算符、案例、循环、冒泡以及prompt提示输入框)

    一元运算在前在后的区别 加加 var num1 = 10; //++在后面 先参与运算 再自加1 var sum1 = num1++ +10; console.log("sum1的值:&qu ...

  4. Octotree Chrome安装与使用整理

    Octotree Chrome作用: 主要使你在github查看项目时可以清晰明了的看到项目的结构以及具体代码,使下载代码更具有目的性,减少不必要代码的下载,而且看起来更清楚. 效果图:(安装插件前) ...

  5. 三年从前端小工到架构-知乎 Live 学习整理

    最近在知乎上学习了vczero (王利华,簋谣)的知乎Live「三年从前端小工到架构」,感觉受益匪浅,现将本次Live学习笔记记录如下. 本次 Live 主要包括以下内容   • 0-3 年的前端工程 ...

  6. MemcacheHelper.cs

    using Memcached.ClientLibrary; using System; using System.Collections.Generic; using System.Linq; us ...

  7. unity3d之实现各种滑动效果

    一. 点击滑动页面 新建了一个带mask的prefab,加上代码只需要将图片prefab.按钮prefab和所想添加的图片 拖进去会自动生成按钮,滑动速度可以随意调time,滑动效果用itween实现 ...

  8. SASS和LESS等优缺点对比,使用方法总结 (笔记大全)

    sass优点: 用户多,更容易找到会用scss的开发,更容易找到scss的学习资源: 可编程能力比较强,支持函数,列表,对象,判断,循环等: 相比less有更多的功能: Bootstrap/Found ...

  9. 浅谈移动端中的视口(viewport)

    在 PC 端,视口指的是浏览器的可视区域,其宽度和浏览器窗口的宽度保持一致.在 CSS 标准文档中,视口也被称为初始包含块,它是所有 CSS 百分比宽度推算的根源,给 CSS 布局限制了一个最大宽度. ...

  10. 201610-H5项目总结

    1.首屏进入动效使用jQuery的animate(); $('.btn_driver').animate({ left:'26%' },'slow'); $('.btn_show').animate( ...