传送门

Description

小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G。对于N*N的矩阵A,A的所有元素均为0或1,

当然询问一个矩阵的G值实在是太简单了。小Z在给出一个N*N矩阵的同时将给你Q个操作,操作描述如下:

操作1:形如一个整数1和一个整数x,表示将第x行的元素全部“翻转”。

操作2:形如一个整数2和一个整数x,表示将第x列的元素全部“翻转”。

操作3:形如一个整数3,表示询问当前矩阵的特征值G。

“翻转”的定义为将1变成0,将0变成1。

Input

第1行:两个正整数N,Q。 N表示矩阵的行数(列数),Q表示询问的个数。

接下来N行:一个N*N的矩阵A,0<=A[i][j]<=1。

接下来Q行:Q个操作。

Output

一行若干个数,中间没有空格,分别表示每个操作的结果(操作1和操作2不需要输出)。

Sample Input


Sample Output


Hint

30% N<=100, Q<=10^5

100% N<=1,000, Q <=5*10^5

Solution

对于30%,O(NQ)暴力出奇迹

对于100%,我们考虑这样一个事实:对于所有的i!=j,会计算四次A,其中通过(i,j)计算A[i][j]*A[j][i],,通过(j,i)计算A[j][i]*A[i][j]。不难发现,无论A[i][j]*A[j][i]等于0还是等于1,相加后取模2恒等于零。

数学证明如下:对于ans=Σ(A[i][j]*A[j][i]+A[i][j]*A[j][i])(i<j) Mod 2=Σ2(A[i][j]*A[j][i]) Mod 2=2*Σ(A[i][j]*A[j][i]) Mod 2=0

所以对于i!=j矩阵元素对答案没有贡献。

所以ans=ΣA[i][i] Mod 2。每次修改 ans^=1即可。

Code

#include<cstdio>
#define ci const int inline void qr(int &x) {
char ch=getchar(),lst=NULL;
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if (lst=='-') x=-x;
} char buf[];
inline void write(int x,const char aft,const bool pt) {
if(x<) {putchar('-');x=-x;}
int top=;
do {
buf[++top]=x%+'';
x/=;
} while(x);
while(top) putchar(buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T &a,const T &b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T &a,const T &b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T &a) {if(a<) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} int n,m,a;
bool ans; int main() {
qr(n);qr(m);
for(int i=;i<=n;++i) for(int j=;j<=n;++j) if(i!=j) qr(a);else {a=;qr(a);if(a) ans^=;}
while(m--) {a=;qr(a);if(a==) {if(ans) putchar('');else putchar('');}else {qr(a);ans^=;}}
putchar('\n');
return ;
}

Summary

对于计算了两遍然后答案Mod 2的元素,可以直接pass。

真tm神仙

【贪心】【P2117】小Z的矩阵的更多相关文章

  1. 洛谷——P2117 小Z的矩阵

    P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...

  2. 洛谷 P2117 小Z的矩阵

    P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...

  3. 洛谷—— P2117 小Z的矩阵

    https://www.luogu.org/problemnew/show/2117 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1 ...

  4. P2117 小Z的矩阵

    题意: 给你一个初始01矩阵 三种操作 1.给一个x,把第x行01互换 2.给一个x,把第x列01互换 3.求$(\sum_{i=1}^n\sum_{j=1}^nf[i][j]*f[j][i])%2$ ...

  5. luogu P2117 小Z的矩阵(结论题)

    题意 题解 这题有点水. 我们发现对答案有贡献的实际上只有左上到右下的对角线上的数. 因为不在这条对角线上的乘积都要计算两遍,然后%2就都没了... 然后就做完了. #include<iostr ...

  6. 数学【p2117】 小z的矩阵

    题目描述-->p2117 小z的矩阵 分析: 题目给定我们一个正方形. 容易想到,正方形是对称的. 推敲一下 如果我们的矩阵是这样的↓ 闭眼瞎敲出来的. \[\begin{bmatrix} {0 ...

  7. 洛谷 题解 P2117 【小Z的矩阵】

    这题这么无聊,亏我还用了读入输出优化... 关键在于,这还是道黄题QWQ 掀桌而起 (╯‵□′)╯︵┻━┻ 显而易见,在i != j的情况下,a[i][j] + a[j][i]和a[j][i] + a ...

  8. 【BZOJ4031】小Z的房间(矩阵树定理)

    [BZOJ4031]小Z的房间(矩阵树定理) 题面 BZOJ 洛谷 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子 ...

  9. 【P2107】小Z的AK计划(优先队列+贪心)

    水一发优先队列的水题.. 这个题貌似以前有做过类似的.具体的方法是用大根堆辅助贪心算法得出正解.可以看出来,如果小Z走到了某个地方,那么他最远一定是到了这里,不可能有再走回来这种操作,因为很明显那样不 ...

随机推荐

  1. 查看linux系统版本命令汇总

    Linux下如何查看版本信息, 包括位数.版本信息以及CPU内核信息.CPU具体型号等等,整个CPU信息一目了然.   1.Linux查看版本当前操作系统内核信息   命令:uname -a

  2. 牛客网暑期ACM多校训练营(第五场):F - take

    链接:牛客网暑期ACM多校训练营(第五场):F - take 题意: Kanade有n个盒子,第i个盒子有p [i]概率有一个d [i]大小的钻石. 起初,Kanade有一颗0号钻石.她将从第1到第n ...

  3. truffle框架快速开发合约步骤

    矩阵元区块链智能合约开发指南 1 适用范围 本规范描述了矩阵元区块链系统智能合约的开发约束与规范,用以指导DAPP开发者按照本规范开发基于矩阵元区块链运行的应用. 2 术语解释 术语 术语解释 DAP ...

  4. SpringBoot项目打包成jar后,启动脚本

    将springboot项目打包成jar后,上传至服务器,每次都需要手敲命令,重新部署项目,可将这些命令写入脚本中,直接运行. 启动脚本(start.sh): CUR_PATH=$(cd "$ ...

  5. js经典试题之闭包

    js经典试题之闭包 1:以下代码输出的结果是? function Foo(){ var i=0; return function(){ document.write(i++); } } var f1= ...

  6. POJ 2229 计数DP

    dp[i]代表是数字i的最多组合数如果i是一个奇数,i的任意一个组合都包含1,所以dp[i] = dp[i-1] 如果i是一个偶数,分两种情况讨论,一种是序列中包含1,因此dp[i]=dp[i-1]一 ...

  7. Java Class Object

    Object类 它是所有类的基类. public class Person { } //实际上是 public class Person extends Object { } Object类的方法 t ...

  8. android AndroidManifest.xml uses-feature 详解

    如果你是一个Android用户,而且你有一个老旧的安装有android 1.5 的android设备,你可 能会注意到一些高版本的应用没有在手机上的Android Market 中显示.这必定是应用使 ...

  9. Spring学习(二)—— java的动态代理机制

    在学习Spring的时候,我们知道Spring主要有两大思想,一个是IoC,另一个就是AOP,对于IoC,依赖注入就不用多说了,而对于Spring的核心AOP来说,我们不但要知道怎么通过AOP来满足的 ...

  10. ajax与servlet交互(通过JSON),JAVA的arraylist传到前端的方法

    所实现的效果:首先从前端(ajax)传参数给servlet,然后servlet经过处理,把arraylist类型的参数以JSON字符串的形式返回给前端(ajax),然后前端经过解析,把JSON字符串解 ...