【贪心】【P2117】小Z的矩阵
Description
小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G。对于N*N的矩阵A,A的所有元素均为0或1,
当然询问一个矩阵的G值实在是太简单了。小Z在给出一个N*N矩阵的同时将给你Q个操作,操作描述如下:
操作1:形如一个整数1和一个整数x,表示将第x行的元素全部“翻转”。
操作2:形如一个整数2和一个整数x,表示将第x列的元素全部“翻转”。
操作3:形如一个整数3,表示询问当前矩阵的特征值G。
“翻转”的定义为将1变成0,将0变成1。
Input
第1行:两个正整数N,Q。 N表示矩阵的行数(列数),Q表示询问的个数。
接下来N行:一个N*N的矩阵A,0<=A[i][j]<=1。
接下来Q行:Q个操作。
Output
一行若干个数,中间没有空格,分别表示每个操作的结果(操作1和操作2不需要输出)。
Sample Input
Sample Output
Hint
30% N<=100, Q<=10^5
100% N<=1,000, Q <=5*10^5
Solution
对于30%,O(NQ)暴力出奇迹
对于100%,我们考虑这样一个事实:对于所有的i!=j,会计算四次A,其中通过(i,j)计算A[i][j]*A[j][i],,通过(j,i)计算A[j][i]*A[i][j]。不难发现,无论A[i][j]*A[j][i]等于0还是等于1,相加后取模2恒等于零。
数学证明如下:对于ans=Σ(A[i][j]*A[j][i]+A[i][j]*A[j][i])(i<j) Mod 2=Σ2(A[i][j]*A[j][i]) Mod 2=2*Σ(A[i][j]*A[j][i]) Mod 2=0
所以对于i!=j矩阵元素对答案没有贡献。
所以ans=ΣA[i][i] Mod 2。每次修改 ans^=1即可。
Code
#include<cstdio>
#define ci const int inline void qr(int &x) {
char ch=getchar(),lst=NULL;
while(ch>''||ch<'') lst=ch,ch=getchar();
while(ch>=''&&ch<='') x=(x<<)+(x<<)+(ch^),ch=getchar();
if (lst=='-') x=-x;
} char buf[];
inline void write(int x,const char aft,const bool pt) {
if(x<) {putchar('-');x=-x;}
int top=;
do {
buf[++top]=x%+'';
x/=;
} while(x);
while(top) putchar(buf[top--]);
if(pt) putchar(aft);
} template <typename T>
inline T mmax(const T &a,const T &b) {if(a>b) return a;return b;}
template <typename T>
inline T mmin(const T &a,const T &b) {if(a<b) return a;return b;}
template <typename T>
inline T mabs(const T &a) {if(a<) return -a;return a;} template <typename T>
inline void mswap(T &a,T &b) {T temp=a;a=b;b=temp;} int n,m,a;
bool ans; int main() {
qr(n);qr(m);
for(int i=;i<=n;++i) for(int j=;j<=n;++j) if(i!=j) qr(a);else {a=;qr(a);if(a) ans^=;}
while(m--) {a=;qr(a);if(a==) {if(ans) putchar('');else putchar('');}else {qr(a);ans^=;}}
putchar('\n');
return ;
}
Summary
对于计算了两遍然后答案Mod 2的元素,可以直接pass。
真tm神仙
【贪心】【P2117】小Z的矩阵的更多相关文章
- 洛谷——P2117 小Z的矩阵
P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...
- 洛谷 P2117 小Z的矩阵
P2117 小Z的矩阵 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1,则G(A)等于所有A[i][j]*A[j][i]的和对2取余 ...
- 洛谷—— P2117 小Z的矩阵
https://www.luogu.org/problemnew/show/2117 题目描述 小Z最近迷上了矩阵,他定义了一个对于一种特殊矩阵的特征函数G.对于N*N的矩阵A,A的所有元素均为0或1 ...
- P2117 小Z的矩阵
题意: 给你一个初始01矩阵 三种操作 1.给一个x,把第x行01互换 2.给一个x,把第x列01互换 3.求$(\sum_{i=1}^n\sum_{j=1}^nf[i][j]*f[j][i])%2$ ...
- luogu P2117 小Z的矩阵(结论题)
题意 题解 这题有点水. 我们发现对答案有贡献的实际上只有左上到右下的对角线上的数. 因为不在这条对角线上的乘积都要计算两遍,然后%2就都没了... 然后就做完了. #include<iostr ...
- 数学【p2117】 小z的矩阵
题目描述-->p2117 小z的矩阵 分析: 题目给定我们一个正方形. 容易想到,正方形是对称的. 推敲一下 如果我们的矩阵是这样的↓ 闭眼瞎敲出来的. \[\begin{bmatrix} {0 ...
- 洛谷 题解 P2117 【小Z的矩阵】
这题这么无聊,亏我还用了读入输出优化... 关键在于,这还是道黄题QWQ 掀桌而起 (╯‵□′)╯︵┻━┻ 显而易见,在i != j的情况下,a[i][j] + a[j][i]和a[j][i] + a ...
- 【BZOJ4031】小Z的房间(矩阵树定理)
[BZOJ4031]小Z的房间(矩阵树定理) 题面 BZOJ 洛谷 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形,每个格子 ...
- 【P2107】小Z的AK计划(优先队列+贪心)
水一发优先队列的水题.. 这个题貌似以前有做过类似的.具体的方法是用大根堆辅助贪心算法得出正解.可以看出来,如果小Z走到了某个地方,那么他最远一定是到了这里,不可能有再走回来这种操作,因为很明显那样不 ...
随机推荐
- Python拼接字符串的7种方法
1.直接通过+操作: s = 'Python'+','+'你好'+'!'print(s) 打印结果: Python,你好! 2.通过join()方法拼接: 将列表转换成字符串 strlist=['Py ...
- bash特性-命令历史命令行编辑
bash: GUI:Gnome,KDE,XFCE CLI:sh,csh,bash,ksh,tcsh,zsh shell,子shell tree:查看目录树 pstree:查看进程目录树 bash: 1 ...
- Selenium 入门到精通系列:六
Selenium 入门到精通系列 PS:Checkbox方法 例子 HTML: <html> <head> <title>测试页面</title> &l ...
- Java学习 · 初识 面向对象深入二
面向对象深入 1. 抽象类 a) 声明 i. 抽象方法和抽象类必须用abstract来修饰 ii. 没有方法体,不需要实现 b) ...
- 【Linux 运维】查看网络连接状态信息之netstat和ss命令详解
一.netstat 常用命令详解 通过man netstat可以查看netstat的帮助信息: netstat 命令:用于显示各种网络相关信息,如网络连接,路由表,接口状态,无效连接,组播成员 等等. ...
- HDU 1232 并查集板子题
某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇.省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可). ...
- The Activation Function in Deep Learning 浅谈深度学习中的激活函数
原文地址:http://www.cnblogs.com/rgvb178/p/6055213.html 版权声明:本文为博主原创文章,未经博主允许不得转载. 激活函数的作用 首先,激活函数不是真的要去激 ...
- nodejs笔记--express篇(五)
创建一个express + ejs的项目 express -e testEjsWebApp cd testEjsWebApp npm install http://localhost:3000 Usa ...
- js经典试题之原型与继承
js经典试题之原型与继承 1:以下代码中hasOwnProperty的作用是? var obj={} …….. obj.hasOwnProperty("val") 答案:判断obj ...
- Zigbee安全基础篇Part.2
原文地址: https://www.4hou.com/wireless/14252.html 导语:本文将会探讨ZigBee标准提供的安全模型,用于安全通信的各种密钥.ZigBee建议的密钥管理方法以 ...