洛谷

这题一看就是卡塔兰数。

因为\(cnt[1] \leq cnt[0]\),很显然的卡塔兰嘛!

平时我们推导卡塔兰是用一个边长为n的正方形推的,

相当于从(0,0)点走到(n,n)点,向上走的步数不能超过向右走,求出的方案数就是卡塔兰数。

即总方案\(-\)不合法方案 -> \(\frac{C_{2n}^{n}}{n+1}\)。

这题只是改成了从(0,0)走到(n,m)点,那么就是:\(C^{m+n}_{n}-C^{m-1}_{m+n}\)。

因为涉及到除法取模,所以要求逆元。

刚刚好20100403是一个质数,不信可以线性筛一下,所以直接费马小定理求逆元。

code(注意要开long long):

#include <bits/stdc++.h>
using namespace std;
typedef int _int;
#define int long long const int mo=20100403;
int n,m,ni[2000001]={1},ans; int qpow(int x,int p)
{
int d=1;
while (p) {
if (p&1) d=d*x%mo;
x=x*x%mo,p>>=1;
}
return d;
} _int main()
{
cin>>n>>m;
for (int i=1;i<=2000000;++i)
ni[i]=ni[i-1]*i,ni[i]%=mo;
ans=(ni[m+n]*qpow(ni[m]*ni[n]%mo,mo-2)%mo-ni[m+n]*qpow(ni[m-1]*ni[n+1]%mo,mo-2)%mo+mo)%mo;
cout<<ans;
return 0;
}

洛谷 P1641 [SCOI2010]生成字符串的更多相关文章

  1. 卡特兰数 洛谷P1641 [SCOI2010]生成字符串

    卡特兰数 参考博客 介绍 卡特兰数为组合数学中的一种特殊数列,用于解决一类特殊问题 设\(f(n)\)为卡特兰数的第n项 其通项公式为 \[f(n)=\frac{2n\choose n}{n+1} \ ...

  2. BZOJ1856或洛谷1641 [SCOI2010]生成字符串

    BZOJ原题链接 洛谷原题链接 可以将\(1\)和\(0\)的个数和看成是\(x\)轴坐标,个数差看成\(y\)轴坐标. 向右上角走,即\(x\)轴坐标\(+1\),\(y\)轴坐标\(+1\),表示 ...

  3. 洛谷 1641 [SCOI2010]生成字符串

    题目戳这里 一句话题意 求\(C_{m+n}^{m}\)-\(C_{m+n}^{m-1}\) Solution 巨说这个题目很水 标签居然还有字符串? 但是我还不很会用逆元真的太菜了,还好此题模数P为 ...

  4. P1641 [SCOI2010]生成字符串

    P1641 [SCOI2010]生成字符串 题目描述 lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数不 ...

  5. 【洛谷】P1641 [SCOI2010]生成字符串(思维+组合+逆元)

    题目 传送门:QWQ 分析 不想画图. https://www.luogu.org/problemnew/solution/P1641 好神仙的题啊. 代码 // luogu-judger-enabl ...

  6. luogu P1641 [SCOI2010]生成字符串

    传送门 代码极短 \(O(n^2)\)dp是设\(f_{i,j,k}\)表示前\(i\)位,放了\(j\)个1,后面还可以接着放\(k\)个0的方案,转移的话,如果放0,\(k\)就要减1,反之放了1 ...

  7. Luogu P1641 [SCOI2010]生成字符串 组合数学

    神仙.... 当时以为是,$x$代表$1$,$y$代表$0$,所以不能过$y=x$的路径数...结果不会... 然后康题解...ヾ(。`Д´。)竟然向右上是$1$,向右下是$0$.... 所以现在就是 ...

  8. [SCOI2010]生成字符串 题解(卡特兰数的扩展)

    [SCOI2010]生成字符串 Description lxhgww最近接到了一个生成字符串的任务,任务需要他把n个1和m个0组成字符串,但是任务还要求在组成的字符串中,在任意的前k个字符中,1的个数 ...

  9. 【解题报告】洛谷 P2571 [SCOI2010]传送带

    [解题报告]洛谷 P2571 [SCOI2010]传送带今天无聊,很久没有做过题目了,但是又不想做什么太难的题目,所以就用洛谷随机跳题,跳到了一道题目,感觉好像不是太难. [CSDN链接](https ...

随机推荐

  1. JS高程3:DOM-DOM操作技术

    动态脚本 加载外部脚本 方式一,直接写代码: var script = document.createElement("script"); script.type = " ...

  2. jquery ui 与 easy ui同时引入 展示效果冲突的问题

    jquery ui 由于在定位控件的时候跟easy UI 控件名相同,同时引入会导致冲突 如果需要两个都存在,可以去jquery ui下载定制版ui 脚本文件

  3. linux学习笔记12--命令less

    less 工具也是对文件或其它输出进行分页显示的工具,应该说是linux正统查看文件内容的工具,功能极其强大.less 的用法比起 more 更加的有弹性.在 more 的时候,我们并没有办法向前面翻 ...

  4. PHP——做服务

    xml的写法和特点 <?xml version='1.0' encoding='utf-8'?><Info><code>c001</code><n ...

  5. windows7常用操作命令

    1.打开命令行 按住Windows键加R键,打开运行窗口 2.打开笔记本 运行窗口中输入:notepad,点击确定或回车,打开记事本工具 主要作用:浏览网页时,看到一些有用的话,那么你是怎么把它记录下 ...

  6. hdu6076 Security Check 分类dp 思维

    /** 题目:hdu6076 Security Check 链接:http://acm.hdu.edu.cn/showproblem.php?pid=6076 题意:有两个队列在排队,每一次警察可以检 ...

  7. ubuntu1204-gedit中文乱码

    1 在界面上使用ALT-F2打开"执行应用程序"界面. 2 输入dconf-editor.然后点击"执行"打开"Configuration Edito ...

  8. java常用 api

    java -cp .:/app/jenkins/ojdbc6-11.2.0.1.0.jar  QueryInterTestImpl onclick="add_win.after(initVa ...

  9. ubuntu 安装 avahi服务

    sudo apt-get install avahi-daemon sudo apt-get install avahi-utils

  10. Python_selenium之窗口切换(二)

    Python_selenium之窗口切换(二)一.思路拆分1. 之前有介绍窗口切换,这里加上断言部分2. 这里还是以百度新闻为例,获取百度新闻网址http://news.baidu.com/3. 同样 ...