SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks
You are given an undirected graph G(V, E). Each vertex has a mark which is an integer from the range [0..231 – 1]. Different vertexes may have the same mark.
For an edge (u, v), we define Cost(u, v) = mark[u] xor mark[v].
Now we know the marks of some certain nodes. You have to determine the marks of other nodes so that the total cost of edges is as small as possible.
Input
The first line of the input data contains integer T (1 ≤ T ≤ 10) - the number of testcases. Then the descriptions of T testcases follow.
First line of each testcase contains 2 integers N and M (0 < N <= 500, 0 <= M <= 3000). N is the number of vertexes and M is the number of edges. Then M lines describing edges follow, each of them contains two integers u, v representing an edge connecting u and v.
Then an integer K, representing the number of nodes whose mark is known. The next K lines contain 2 integers u and p each, meaning that node u has a mark p. It’s guaranteed that nodes won’t duplicate in this part.
Output
For each testcase you should print N lines integer the output. The Kth line contains an integer number representing the mark of node K. If there are several solutions, you have to output the one which minimize the sum of marks. If there are several solutions, just output any of them.
Example
Input:
1
3 2
1 2
2 3
2
1 5
3 100 Output:
5
4
100

Select Code
#include<cstdio>
#include<cstring>
#include<iostream>
using namespace std;
const int N=3e4+5;
const int M=1e6+5;
struct edge{int v,next,cap;}e[M];int tot=1,head[N];
int mark[N],ans[N],dis[N],q[N*10];bool vis[N];
int cas,n,m,k,S,T,a[N][2];
inline int read(){
int x=0,f=1;char ch=getchar();
while(ch<'0'||ch>'9'){if(ch=='-')f=-1;ch=getchar();}
while(ch>='0'&&ch<='9'){x=x*10+ch-'0';ch=getchar();}
return x*f;
}
inline void add(int x,int y,int z1,int z2=0){
e[++tot].v=y;e[tot].cap=z1;e[tot].next=head[x];head[x]=tot;
e[++tot].v=x;e[tot].cap=z2;e[tot].next=head[y];head[y]=tot;
}
inline bool bfs(){
for(int i=S;i<=T;i++) dis[i]=-1;
int h=0,t=1;q[t]=S;dis[S]=0;
while(h!=t){
int x=q[++h];
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==-1){
dis[e[i].v]=dis[x]+1;
if(e[i].v==T) return 1;
q[++t]=e[i].v;
}
}
}
return 0;
}
int dfs(int x,int f){
if(x==T) return f;
int used=0,t;
for(int i=head[x];i;i=e[i].next){
if(e[i].cap&&dis[e[i].v]==dis[x]+1){
t=dfs(e[i].v,min(e[i].cap,f));
e[i].cap-=t;e[i^1].cap+=t;
used+=t;f-=t;
if(!f) return used;
}
}
if(!used) dis[x]=-1;
return used;
}
inline int dinic(){
int res=0;
while(bfs()) res+=dfs(S,2e9);
return res;
}
void init(){
n=read();m=read();S=0;T=n+1;
memset(mark,-1,n+1<<2);
for(int i=1;i<=m;i++) a[i][0]=read(),a[i][1]=read();
k=read();
for(int i=1,x,y;i<=k;i++) x=read(),y=read(),mark[x]=y;
}
void DFS(int x,int d){
vis[x]=1;
ans[x]+=d;
for(int i=head[x];i;i=e[i].next){
if(!vis[e[i].v]&&e[i].cap){
DFS(e[i].v,d);
}
}
}
void work(){
memset(ans,0,n+1<<2);
int bite=1;
for(;;){
tot=1;memset(head,0,n+2<<2);
for(int i=1;i<=m;i++) add(a[i][0],a[i][1],1,1);
bool flag=0;
for(int i=1;i<=n;i++){
if(~mark[i]){
if(mark[i]>=1) flag=1;
if(mark[i]&1){
add(S,i,2e9);
}
else{
add(i,T,2e9);
}
mark[i]>>=1;
}
}
if(!flag) break;
dinic();
memset(vis,0,sizeof vis);
DFS(S,bite);bite<<=1;
}
for(int i=1;i<=n;i++) printf("%d ",ans[i]);putchar('\n');
}
int main(){
cas=read();
while(cas--) init(),work();
return 0;
}
SPOJ OPTM - Optimal Marks的更多相关文章
- 图论(网络流):SPOJ OPTM - Optimal Marks
OPTM - Optimal Marks You are given an undirected graph G(V, E). Each vertex has a mark which is an i ...
- 【bzoj2400】Spoj 839 Optimal Marks 按位最大流
Spoj 839 Optimal Marks Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 908 Solved: 347[Submit][Stat ...
- 【BZOJ2400】Spoj 839 Optimal Marks 最小割
[BZOJ2400]Spoj 839 Optimal Marks Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. ...
- SPOJ 839 OPTM - Optimal Marks (最小割)(权值扩大,灵活应用除和取模)
http://www.spoj.com/problems/OPTM/ 题意: 给出一张图,点有点权,边有边权 定义一条边的权值为其连接两点的异或和 定义一张图的权值为所有边的权值之和 已知部分点的点权 ...
- spoj 839 OPTM - Optimal Marks&&bzoj 2400【最小割】
因为是异或运算,所以考虑对每一位操作.对于所有已知mark的点,mark的当前位为1则连接(s,i,inf),否则连(i,t,inf),然后其他的边按照原图连(u,v,1),(v,u,1),跑最大流求 ...
- BZOJ2400: Spoj 839 Optimal Marks
Description 定义无向图中的一条边的值为:这条边连接的两个点的值的异或值. 定义一个无向图的值为:这个无向图所有边的值的和. 给你一个有n个结点m条边的无向图.其中的一些点的值是给定的,而其 ...
- spoj 839 Optimal Marks(二进制位,最小割)
[题目链接] http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17875 [题意] 给定一个图,图的权定义为边的两端点相抑或值的 ...
- SPOJ839 OPTM - Optimal Marks
传送门 闵神讲网络流应用的例题,来水一水 要写出这道题,需要深入理解两个概念,异或和最小割. 异或具有相对独立性,所以我们把每一位拆开来看,即做大概$32$次最小割.然后累加即可. 然后是最小割把一张 ...
- SPOJ 839 Optimal Marks(最小割的应用)
https://vjudge.net/problem/SPOJ-OPTM 题意: 给出一个无向图G,每个点 v 以一个有界非负整数 lv 作为标号,每条边e=(u,v)的权w定义为该边的两个端点的标号 ...
随机推荐
- 2013夏,iDempiere来了 - v1.0c Installers (Devina LTS Release) 2013-06-27
怀揣着为中小企业量身定做一整套开源软件解决方案的梦想开始了一个网站的搭建.http://osssme.org/ iDempiere来了 - v1.0c Installers (Devina LTS R ...
- docker中批量删除 tag为none的镜像
添加定时任务,批量删除tag 为none 的镜像 ,释放磁盘空间 [root@weifeng]:~# crontab -l */ * * * /usr/bin/docker rmi `docker ...
- 学习-短信的上行(MO)和下行(MT)详解
基础知识: SP服务提供商: 通常是指在移动网内运营增值业务的社会合作单位, 它们建立与移动网络建立相连的服务平台, 为手机用户提供一系列信息服务, 如:娱乐.游戏.短信.彩信.WAP.彩铃.铃声下载 ...
- 转:maven3常用POM属性及Settings属性介绍
原文:http://blog.csdn.net/lgm277531070/article/details/6922645 A.pom.xml属性介绍: project: pom的xml根元素. par ...
- bbc mvn报错
http://www.cnblogs.com/zhouyalei/archive/2011/11/30/2268606.html
- 使用Wifi连接ADB调试App
前提:你的手机ROOT过,做Android开发的,别跟人说你的手机不是ROOT的. 步骤: 1.在手机上把ADB服务进程的TCP端口设置为5555,这是Android ADB的默认调试商品.这需要 ...
- 最实用、最常用的jQuery代码片段
// chinacoder.cn JavaScript Document $(document).ready(function() { //.filter(":not(:has(.selec ...
- Easyui 二级菜单
<div class="fitem"> <label>所在城市:</label> <input id="cityId" ...
- python 2,3版本自动识别导入
import sys if str(sys.version[0]) == "3": from urllib.parse import quote_plus from ...
- python得到今天前的七天每天日期
import datetime d = datetime.datetime.now() def day_get(d): # 通过for 循环得到天数,如果想得到两周的时间,只需要把8改成15就可以了. ...