求n!在k进制下的位数,n<=1e18

斯特林公式:$n!\approx \sqrt{2\pi n}(\frac{n}{e})^n$

在n很大的时候有较好的精度保证。

$\log_{k}n!+1=\frac{1}{2}\frac{\ln(2\pi n)}{\ln k}+n\frac{\ln n-\ln e}{\ln k}+1$

n较小时直接暴力求解即可。

 #include<cmath>
#include<cstdio>
#include<algorithm>
#define rep(i,l,r) for (int i=(l); i<=(r); i++)
using namespace std; const double pi=acos(-.),e=exp(),eps=1e-;
int n,k; int main(){
while (~scanf("%d%d",&n,&k)){
if (n<=){
double ans=;
rep(i,,n) ans+=log(i); ans/=log(k);
printf("%d\n",(int)ceil(ans+eps));
}else printf("%lld\n",(long long)(0.5*log(*pi*n)/log(k)+n*(log(n)-log(e))/log(k)+));
}
return ;
}

[BZOJ3000]Big Number(斯特林公式)的更多相关文章

  1. bzoj3000 Big Number 数论,斯特林公式

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果 Sample In ...

  2. hdu1018 Big Number 斯特林公式 求N!的位数。

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  3. HDU-Big Number (斯特林公式)

    In many applications very large integers numbers are required. Some of these applications are using ...

  4. HDU 1018 Big Number 斯特林公式

    Big Number 题意:算n!的位数. 题解:对于一个数来算位数我们一般都是用while去进行计算,但是n!这个数太大了,我们做不到先算出来在去用while算位数. while(a){ cnt++ ...

  5. BZOJ3000 Big Number

    由Stirling公式: $$n! \approx \sqrt{2 \pi n} (\frac{n}{e})^n$$ 故:$$\begin{align} ans &= log_k n! + 1 ...

  6. [BZOJ3000] Big Number (Stirling公式)

    Description 给你两个整数N和K,要求你输出N!的K进制的位数. Input 有多组输入数据,每组输入数据各一行,每行两个数——N,K Output 每行一个数为输出结果. Sample I ...

  7. hdu--1018--Big Number(斯特林公式)

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

  8. POJ 1423:Big Number 求N的阶乘的长度 斯特林公式

    Big Number Time Limit: 1000MS   Memory Limit: 65536K Total Submissions: 27027   Accepted: 8626 Descr ...

  9. HDU 1018 Big Number【斯特林公式/log10 / N!】

    Big Number Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others)Total ...

随机推荐

  1. 「6月雅礼集训 2017 Day11」tree

    [题目大意] 给出一棵带权树,有两类点,一类黑点,一类白点. 求切断黑点和白点间路径的最小代价. $n \leq 10^5$ [题解] 直接最小割能过..但是树形dp明显更好写 设$f_{x,0/1/ ...

  2. Linux简介——(一)

    1. 常见操作系统 - 服务端操作系统 : linux.unix.windows server - 单机操作系统 : windows(dos .ucdos.win95.win98.win2000.xp ...

  3. [干货,阅后进BAT不是梦]面试心得与总结---BAT、网易、蘑菇街

    本文转载自:公众号:JANiubility 前言 之前实习的时候就想着写一篇面经,后来忙就给忘了,现在找完工作了,也是该静下心总结一下走过的路程了,我全盘托出,奉上这篇诚意之作,希望能给未来找工作的人 ...

  4. 【转】jpg文件格式详解

    JPEG(Joint Photographic Experts Group)是联合图像专家小组的英文缩写.它由国际电话与电报咨询委员会CCITT(The International Telegraph ...

  5. 给windows设置隐藏文件夹的方法

    cls @ECHO OFF title Folder Private if EXIST "HTG Locker" goto UNLOCK if NOT EXIST Private ...

  6. 64_f1

    FUR-0.4.6-13.fc26.x86_64.rpm 13-Feb-2017 23:32 45882 Falcon-0.9.6.8-11.fc26.i686.rpm 13-Feb-2017 23: ...

  7. Docker壳的配置笔记

    docker 就是一个运行容器,在这个盒子里,他的端口,路径可以虚拟到另一个实际的磁盘上,运行空间独立,更安全! yum install -y docker docker-client service ...

  8. docker数据管理--数据卷的备份

    /* 先在宿主机创建一个备份的文 件夹, 然后将其以另外一个名字的目录挂载到容器里, 此时不管容器里,或宿主机里做什么操作, 数据都会及时更新,并得到备份. */ [root@localhost ~] ...

  9. vsftpd 虚拟用户配置

    vsftpd 虚拟用户的作用是 通过不同的虚拟用户可以有不同的根目录. 从 2.3.5 版本之后,vsftpd增强了安全检查,如果用户被限定在了其主目录下,则该用户的主目录不能在具有写权限了,如果检查 ...

  10. Mysql 数据库学习笔记04 函数

    一.创建自定义函数 * 使用自定义函数,可以返回字符串.整型.实数或者其他类型: create [aggregate] function 名称 (参数列表) return type begin //函 ...