树形dp入门(poj 2342 Anniversary party)
题意:
某公司要举办一次晚会,但是为了使得晚会的气氛更加活跃,每个参加晚会的人都不希望在晚会中见到他的直接上司,现在已知每个人的活跃指数和上司关系(当然不可能存在环),求邀请哪些人(多少人)来能使得晚会的总活跃指数最大。
解题思路:
任何一个点的取舍可以看作一种决策,那么状态就是在某个点取的时候或者不取的时候,以他为根的子树能有的最大活跃总值。分别可以用f[i,1]和f[i,0]表示第i个人来和不来。
当i来的时候,dp[i][1] += dp[j][0];//j为i的下属
当i不来的时候,dp[i][0] +=max(dp[j][1],dp[j][0]);//j为i的下属
Description
There is going to be a party to celebrate the 80-th Anniversary of the Ural State University. The University has a hierarchical structure of employees. It means that the supervisor relation forms a tree rooted at the rector V. E. Tretyakov. In order to make the party funny for every one, the rector does not want both an employee and his or her immediate supervisor to be present. The personnel office has evaluated conviviality of each employee, so everyone has some number (rating) attached to him or her. Your task is to make a list of guests with the maximal possible sum of guests’ conviviality ratings.
Input
Employees are numbered from 1 to N. A first line of input contains a number N. 1 <= N <= 6 000. Each of the subsequent N lines contains the conviviality rating of the corresponding employee. Conviviality rating is an integer number in a range from -128 to 127. After that go N – 1 lines that describe a supervisor relation tree. Each line of the tree specification has the form:
L K
It means that the K-th employee is an immediate supervisor of the L-th employee. Input is ended with the line
0 0
Output
Output should contain the maximal sum of guests’ ratings.
Sample Input
7
1
1
1
1
1
1
1
1 3
2 3
6 4
7 4
4 5
3 5
0 0
Sample Output
5
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
typedef long long ll;
const int maxn=6005;
const int INF=0x3f3f3f3f;
//先建树,找到根节点,然后开始dfs
int n,m,x,y;
int dp[maxn][2],vis[maxn],father[maxn];//dp[i][1]表示来,dp[i][0]表示不来
void dfs(int node)
{
int i,j;
vis[node]=1;
for(i=1; i<=n; i++)
{
if(!vis[i]&&father[i]==node)
{
dfs(i);//从根节点的儿子节点开始递归
dp[node][1]+=dp[i][0];//上司来
dp[node][0]+=max(dp[i][1],dp[i][0]);//上司不来,然后看下属来还是不来
}
}
}
int main()
{
while(~scanf("%d",&n))
{
int i,j;
memset(father,0,sizeof(father));
memset(dp,0,sizeof(dp));
memset(vis,0,sizeof(vis));
for(i=1; i<=n; i++)
scanf("%d",&dp[i][1]);
int root=0;
//bool flag=1;
while(~scanf("%d %d",&x,&y)&&(x!=0||y!=0))
{
father[x]=y;
//if(root==x||flag)
//root=y;
}
root=y;
while(father[root])
root=father[root];//找根节点
dfs(root);
int maxx=max(dp[root][1],dp[root][0]);
printf("%d\n",maxx);
}
return 0;
}
//更快的一种方法
#include<map>
#include<set>
#include<queue>
#include<stack>
#include<vector>
#include<math.h>
#include<cstdio>
#include<sstream>
#include<numeric>//STL数值算法头文件
#include<stdlib.h>
#include <ctype.h>
#include<string.h>
#include<iostream>
#include<algorithm>
#include<functional>//模板类头文件
using namespace std;
//typedef long long ll;
//const int maxn=6005;
//const int INF=0x3f3f3f3f;
struct node
{
int child,father,brother,present,not_present;
int max()//结构体内的函数调用时耗时少
{
return present>not_present?present:not_present;
}
void init()
{
child=father=brother=not_present=0;
}
} tree[6005];
void dfs(int root)
{
int son = tree[root].child;
while(son)
{
dfs(son);
tree[root].present+=tree[son].not_present;
tree[root].not_present+=tree[son].max();
son = tree[son].brother;
}
}
int main()
{
int n,i,j,k,l;
while(~scanf("%d",&n)&&n)
{
for(i = 1; i<=n; i++)
{
scanf("%d",&tree[i].present);
tree[i].init();
}
while(~scanf("%d%d",&l,&k),l+k)
{
tree[l].father = k;
tree[l].brother = tree[k].child;
tree[k].child = l;
}
for(i = 1; i<=n; i++)
{
if(!tree[i].father)
{
dfs(i);
printf("%d\n",tree[i].max());
break;
}
}
}
return 0;
}
树形dp入门(poj 2342 Anniversary party)的更多相关文章
- DP Intro - poj 2342 Anniversary party
今天开始做老师给的专辑,打开DP专辑 A题 Rebuilding Roads 直接不会了,发现是树形DP,百度了下了该题,看了老半天看不懂,想死的冲动都有了~~~~ 最后百度了下,树形DP入门,找到了 ...
- (树形DP入门题)Anniversary party(没有上司的舞会) HDU - 1520
题意: 有个公司要举行一场晚会.为了让到会的每个人不受他的直接上司约束而能玩得开心,公司领导决定:如果邀请了某个人,那么一定不会再邀请他的直接的上司,但该人的上司的上司,上司的上司的上司等都可以邀请. ...
- POJ 2342 树形DP入门题
有一个大学的庆典晚会,想邀请一些在大学任职的人来參加,每一个人有自己的搞笑值,可是如今遇到一个问题就是假设两个人之间有直接的上下级关系,那么他们中仅仅能有一个来參加,求请来一部分人之后,搞笑值的最大是 ...
- [poj2342]Anniversary party树形dp入门
题意:选出不含直接上下司关系的最大价值. 解题关键:树形dp入门题,注意怎么找出根节点,运用了并查集的思想. 转移方程:dp[i][1]+=dp[j][0];/i是j的子树 dp[i][0]+=max ...
- POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划)
POJ 2342 Anniversary party / HDU 1520 Anniversary party / URAL 1039 Anniversary party(树型动态规划) Descri ...
- 树形dp 入门
今天学了树形dp,发现树形dp就是入门难一些,于是好心的我便立志要发一篇树形dp入门的博客了. 树形dp的概念什么的,相信大家都已经明白,这里就不再多说.直接上例题. 一.常规树形DP P1352 没 ...
- 树形DP入门详解+题目推荐
树形DP.这是个什么东西?为什么叫这个名字?跟其他DP有什么区别? 相信很多初学者在刚刚接触一种新思想的时候都会有这种问题. 没错,树形DP准确的说是一种DP的思想,将DP建立在树状结构的基础上. 既 ...
- LuoGu-P1122 最大子树和+树形dp入门
传送门 题意:在一个树上,每个加点都有一个值,求最大的子树和. 思路:据说是树形dp入门. 用dfs,跑一边,回溯的时候求和,若和为负数,则减掉,下次不记录这个节点. #include <ios ...
- POJ 2342 - Anniversary party - [树形DP]
题目链接:http://poj.org/problem?id=2342 Description There is going to be a party to celebrate the 80-th ...
- poj 2342 Anniversary party 简单树形dp
Anniversary party Time Limit: 1000MS Memory Limit: 65536K Total Submissions: 3862 Accepted: 2171 ...
随机推荐
- c# socket select 模型代码(u3d)
其实写过多次网络链接.但是因为换了工作,又没电脑在身边,所以以前的代码都没办法翻出来用. 所以从今天起,一些常用的代码只好放到网上. 公司有一个局域网的游戏.本来想用u3d的rpc就可以完成.但是后来 ...
- Item 11 谨慎地覆盖Clone
1.进行浅拷贝时,只是复制原始数据类型的值,则可以通过覆盖Clone方法来达到.另外,在进行浅拷贝的时候,还要注意,成员对象中不应该要有引用类型,如果有引用类型,那么,进行了浅拷贝之后,两个对象将会共 ...
- 【BZOJ4817】【SDOI2017】树点涂色 [LCT][线段树]
树点涂色 Time Limit: 10 Sec Memory Limit: 128 MB[Submit][Status][Discuss] Description Bob有一棵n个点的有根树,其中1 ...
- 【BZOJ】1709: [Usaco2007 Oct]Super Paintball超级弹珠
[算法]模拟 [题解]O(n^2)预处理横线(y),纵线(x),主对角线(y-x+n),副对角线(x+y). 然后n^2枚举每个点.
- Tunnel Warfare(HDU1540+线段树+区间合并)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1540 题目: 题意:总共有n个村庄,有q次操作,每次操作分为摧毁一座村庄,修复一座村庄,和查询与询问的 ...
- Codeforces Round #494 (Div. 3)
刚好在考完当天有一场div3,就开了个小号打了,打的途中被辅导员喊去帮忙,搞了二十分钟-_-||,最后就出了四题,题解如下:题目链接:http://codeforces.com/contest/100 ...
- VS推荐插件
以下插件均可在NuGet下载 Smooth Scroll 平滑滚动 Format document on Save 保存时自动格式化代码 Supercharger VS增强插件[破解教程] HideM ...
- Angular2.0 基础: User Input
1.Angular 2.0 中的变量 对输入值的获取,我们可以通过$event 来获取,也可以通过变量来获取. template: ` <input (keyup)="onKey($e ...
- SpringCloud Feign重试详解
摘要: 今天在生产环境发生了数据库进程卡死的现象,除了sql因为全量更新,没加索引的原因,最主要还是我们的接口的服务器端接口出现问题了.忽视了更新接口的幂等性,以及调用方feign client的重试 ...
- Vue组件-动态组件
动态组件 通过使用保留的 <component> 元素,动态地绑定到它的 is 特性,可以让多个组件使用同一个挂载点,并动态切换: <div id="app6"& ...