题意:有一棵树,每条边给定初始权值。一个人从s点出发。支持两种操作:修改一条边的权值;求从当前位置到点u的最短路径。

分析:就是在边可以修改的情况下求树上最短路。如果不带修改的话,用RMQ预处理LCA即可。

在静态版本的LCA问题上,用树状数组维护一条边在dfs序中表示的一段区间。为什么是一段区间,因为求该边之下的任意一点到根节点的距离都必须经过这条边。

用树状数组差分前缀和的方式维护区间修改。

#include<iostream>
#include<cstdio>
#include<algorithm>
#include<cstring>
#include<cmath>
using namespace std;
#define maxn 100005
struct Edge{
int to,next,id;
}edge[maxn<<]; int n,a[maxn],head[maxn],dep[maxn<<],cnt,pos[maxn],dfs_seq[maxn<<],dfn,f[maxn<<][];
int W[maxn],L[maxn],R[maxn],dfs_clock,C[maxn],G[maxn]; inline void add(int u,int v,int id)
{
edge[cnt].to=v;
edge[cnt].next=head[u];
edge[cnt].id=id;
head[u]=cnt++;
} inline int lowbit(int x){return (x)&(-x);} void init()
{
memset(head,-,sizeof(head));
memset(pos,-,sizeof(pos));
memset(C,,sizeof(C));
cnt=dfn=;
dfs_clock=;
} void dfs(int u,int deep)
{
dfs_seq[dfn]=u,dep[dfn]=deep,pos[u]=dfn++;
L[u]=++dfs_clock;
for(int i=head[u];~i;i=edge[i].next){
int v=edge[i].to;
if(pos[v]==-){
G[edge[i].id]=v;
dfs(v,deep+);
dfs_seq[dfn]=u,dep[dfn++]=deep;
}
}
R[u]=dfs_clock;
} void init_RMQ(int n)
{
for(int i=;i<=n;++i) f[i][]=i;
for(int j=;(<<j)<=n;++j)
for(int i=;i+(<<j)-<=n;++i){
if(dep[f[i][j-]]<dep[f[i+(<<(j-))][j-]]) f[i][j]=f[i][j-];
else f[i][j]=f[i+(<<(j-))][j-];
}
} inline int RMQ(int L,int R)
{
int k=;
while(<<(k+)<=R-L+) ++k;
if(dep[f[L][k]]<dep[f[R-(<<k)+][k]]) return f[L][k];
return f[R-(<<k)+][k];
} inline int lca(int u,int v)
{
if(pos[u]>pos[v]) return dfs_seq[RMQ(pos[v],pos[u])];
return dfs_seq[RMQ(pos[u],pos[v])];
} inline void update(int i,int x)
{
for(;i<=n;i+=lowbit(i)) C[i]+=x;
} inline int sum(int i)
{
int s=;
for(;i>;i-=lowbit(i)) s+=C[i];
return s;
} int main()
{
int i,u,v,k,q,w,s;
while(~scanf("%d%d%d",&n,&q,&s)){
init();
for(i=;i<n;++i){
scanf("%d%d%d",&u,&v,&w);
add(u,v,i);
add(v,u,i);
W[i]=w;
}
dfs(,);
init_RMQ(dfn-);
u=s; for(i=;i<n;++i){
update(L[G[i]],W[i]);
update(R[G[i]]+,-W[i]);
} while(q--){
scanf("%d",&k);
if(k){
scanf("%d%d",&u,&w);
update(L[G[u]],w-W[u]);
update(R[G[u]]+,-w+W[u]);
W[u]=w;
}
else{
scanf("%d",&v);
printf("%d\n",sum(L[s])+sum(L[v])-*sum(L[lca(s,v)]));
s=v;
}
}
}
return ;
}

树链剖分的方法也类似。剖出轻重链之后,可以快速求解lca,并用树状数组维护边的信息,同样是用差分的方式。

通常树链剖分维护的是树上点的信息,但本题可以用每条边在dfs树上的后继点来表示该边。

#include<cstdio>
#include<iostream>
#include<algorithm>
#include<cstring>
using namespace std;
const int maxn =1e5+;
struct Edge{
int to,next;
}E[*maxn];
int n,head[maxn],tot;
int idx,size[maxn],fa[maxn],son[maxn],dep[maxn],top[maxn],l[maxn],r[maxn];
int edge[maxn][];
int bit[maxn]; void init()
{
idx=tot=;
memset(head,-,sizeof(head));
dep[]=,fa[]=,size[]=;
memset(son,,sizeof(son));
}
void AddEdge(int u,int v)
{
E[tot] = (Edge){v,head[u]};
head[u]=tot++;
}
void dfs1(int u)
{
size[u]=;
for(int i=head[u];~i;i=E[i].next){
int v=E[i].to;
if(v!=fa[u]){
fa[v]=u;
dep[v]=dep[u]+;
dfs1(v);
size[u]+=size[v];
if(size[son[u]]<size[v]) son[u]=v;
}
}
} void dfs2(int u,int topu)
{
top[u]= topu;
l[u] = ++idx;
if(son[u]) dfs2(son[u],top[u]);
for(int i=head[u];~i;i=E[i].next){
int v=E[i].to;
if(v!=fa[u]&&v!=son[u]) dfs2(v,v);
}
r[u] = idx;
} void add(int pos,int val){
for(int i=pos;i<=n;i+= i&(-i)) bit[i]+=val;
} inline int sum(int pos){
int res=;
for(int i=pos;i;i-= i&(-i)) res+=bit[i];
return res;
} int lca(int u,int v){
while(top[u]!=top[v]){
if(dep[top[u]]<dep[top[v]]) swap(u,v);
u = fa[top[u]];
}
return dep[u]<dep[v] ? u:v;
} int dist(int u,int v){
return sum(l[u])+sum(l[v]) - *sum(l[lca(u,v)]);
} int main()
{
#ifndef ONLINE_JUDGE
freopen("in.txt","r",stdin);
freopen("out.txt","w",stdout);
#endif
int q,s,op,u,v,w;
while(scanf("%d%d%d",&n,&q,&s)==){
init();
memset(bit,,sizeof(bit));
for(int i=;i<n;++i){
scanf("%d%d%d",&u,&v,&w);
AddEdge(u,v);
AddEdge(v,u);
edge[i][] = u,edge[i][] =v,edge[i][] =w;
}
dfs1();
dfs2(,);
for(int i=;i<n;++i){
if(dep[edge[i][]]>dep[edge[i][]]) swap(edge[i][],edge[i][]);
v = edge[i][];
add(l[v],edge[i][]);
add(r[v]+,-edge[i][]);
} while(q--){
scanf("%d",&op);
if(op==){
scanf("%d",&u);
printf("%d\n",dist(s,u));
s = u;
}
else{
int k;
scanf("%d%d",&k,&w);
v = edge[k][];
add(l[v],w-edge[k][]);
add(r[v]+,-w+edge[k][]);
edge[k][] =w;
}
}
}
return ;
}

POJ - 2763 Housewife Wind (树链剖分/ LCA+RMQ+树状数组)的更多相关文章

  1. POJ 2763 Housewife Wind(DFS序+LCA+树状数组)

    Housewife Wind Time Limit: 4000MS   Memory Limit: 65536K Total Submissions: 11419   Accepted: 3140 D ...

  2. Bzoj 2588 Spoj 10628. Count on a tree(树链剖分LCA+主席树)

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MB Description 给定一棵N个节点的树,每个点 ...

  3. HDU5266 LCA 树链剖分LCA 线段树

    HDU5266 LCA Description 给一棵 n 个点的树,Q 个询问 [L,R] : 求点 L , 点 L+1 , 点 L+2 -- 点 R 的 LCA. Input 多组数据. The ...

  4. POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 )

    POJ.2763 Housewife Wind ( 边权树链剖分 线段树维护区间和 ) 题意分析 给出n个点,m个询问,和当前位置pos. 先给出n-1条边,u->v以及边权w. 然后有m个询问 ...

  5. poj 2763 Housewife Wind(树链拆分)

    id=2763" target="_blank" style="">题目链接:poj 2763 Housewife Wind 题目大意:给定一棵 ...

  6. POJ 2763 Housewife Wind LCA转RMQ+时间戳+线段树成段更新

    题目来源:POJ 2763 Housewife Wind 题意:给你一棵树 2种操作0 x 求当前点到x的最短路 然后当前的位置为x; 1 i x 将第i条边的权值置为x 思路:树上两点u, v距离为 ...

  7. poj 3237 Tree(树链剖分,线段树)

    Tree Time Limit: 5000MS   Memory Limit: 131072K Total Submissions: 7268   Accepted: 1969 Description ...

  8. bzoj 3626 [LNOI2014]LCA(离线处理+树链剖分,线段树)

    3626: [LNOI2014]LCA Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 1272  Solved: 451[Submit][Status ...

  9. [luogu4886] 快递员(点分治,树链剖分,lca)

    dwq推的火题啊. 这题应该不算是点分治,但是用的点分治的思想. 每次找重心,算出每一对询问的答案找到答案最大值,考虑移动答案点,使得最大值减小. 由于这些点一定不能在u的两颗不同的子树里,否则你怎么 ...

随机推荐

  1. pl/sql 实例精解 04

    本章主要讨论, IF 语句的应用. 1: if condition1 then 2: statement1 3: elsif condition2 then 4: statement2 5: else ...

  2. c++ 单例模式 对全局变量的替代

    前段时间要实习一个充值接口,创建了一个类(就叫类A好了),这个类A要和另外3个类进行交互,3个类对类A修改的数据是对其他类可见的.这种情况我想到了3个方法: 1.static 静态成员,静态成员为该类 ...

  3. javascript对下拉列表框(select)的操作

    <form id="f"> <select size="1" name="s"> <option value= ...

  4. python笔记8 - excel操作

    前提: python操作excel需要使用的模块有xlrd.xlwt.xlutils.对excel进行读.写.更新操作.操作excel时需要先导入这些模块,demo如下: excel-读操作知识点: ...

  5. 再谈Unity调用Android的Activity

    这段时间在研究Unity4.3开发环境下.怎样调用由Android SDK4.4.2写的Activity.參考了非常多网上的博客.百度出了几十篇大部分都是转载雨松MOMO的,这里必须向雨松MOMO表示 ...

  6. LTP4J的使用BUG及解决方案

    子墨子曾经曰过,LTP是个好模型! car老师oneplus还有bhan开发的LTP4J是个很好的项目,使用起来也非常方便,下面贴几个常见的错误使用引起的bug的log分析 1.现象描述:程序中断,生 ...

  7. Centos 虚拟机网络问题,网卡起不来,重启network服务失败

    拷贝了个虚拟机,有两个网卡,1个可以起来,另一个起不来.运行命令:$>systemctl restart network 输出如下:Job for network.service failed ...

  8. mac同时安装多个jdk

    DK8 GA之后,小伙伴们喜大普奔,纷纷跃跃欲试,想体验一下Java8的Lambda等新特性,可是目前Java企业级应用的主打版本还是JDK6, JDK7.因此,我需要在我的电脑上同时有JDK8,JD ...

  9. [Algorithms] Radix Sort

    Radix sort is another linear time sorting algorithm. It sorts (using another sorting subroutine) the ...

  10. 160725、Java Map按键排序和按值排序

    按键排序(sort by key) jdk内置的Java.util包下的TreeMap<K,V>既可满足此类需求,原理很简单,其重载的构造器之一 有一个参数,该参数接受一个比较器,比较器定 ...