欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~

背景:5月23-24日,以“焕启”为主题的腾讯“云+未来”峰会在广州召开,广东省各级政府机构领导、海内外业内学术专家、行业大咖及技术大牛等在现场共议云计算与数字化产业创新发展。

腾讯云AI平台技术负责人王才华博士在腾讯“云+未来”峰会的「开发者专场」做了主题为“智能钛・一站式机器学习 TI-ONE:腾讯云上的机器(深度)学习IDE”的技术内容分享。

最近大家有没有看漫威的《复仇者联盟3》?其中钢铁侠的战甲就是用金属钛制造的,钛具有质量轻,高强度的特点,而TI-ONE是人工智能平台,因此我们用了科技感十足的名字“智能钛”来形容它。

首先说说为什么需要TI-ONE?

人工智能的重要性不需要我再强调,Andrew Ng 在Spark Summit 2017上提出《AI: The new Electricity》. 各大公司也相争提出自己的机器学习平台,比如说微软的CNTK,Google的Tensorflow等等。但是回答为什么需要TI-ONE这个问题,还要从云计算的特点和机器学习的生命周期出发。在云上,我们偏向云服务化,基础设施服务化,平台服务化,算法服务化,机器学习算法也不例外。

但是机器学算法有一个漫长的生命周期,从数据获取到数据预处理再到选择一个框架并编写算法,然后训练得到一个模型,最后用这个模型进行预测。在云上我们还要对模型进行服务化。如此漫长的过程,所以我们需要加速机器学习的生命周期,加速模型的服务化,这就是我们需要TI-ONE的原因。

具体而言,TI-ONE提供了如下功能:

首先整合了数据预处理平台,提高数据预处理效率。

支持主流机器学习框架,内置常用算法,以拖拽的方式就能完成算法开发。

支持自动调参,支持多个层面的协作,支持了一键模型部署和服务化,还有在线推理。

用开发者的语言来说, TI-ONE就是腾讯云上的机器学习IDE。

什么是TI-ONE?

我将从架构,工作流,调参,协作,部署等这几个方面进行分享。

TI-ONE是一个层次架构,最下层是COS存储层,存储层之上是GaiaStack资源调度层,GaiaStack赋予TI One很多商业特性,后面我会展开分享。调度层之上是架构层,我们整合了Tensorflow,PyTorch,XGBoost,Angel和Spark等,其中Angel是腾讯自研的,Spark是腾讯增强的。算法方面,我们集成了大量的常用算法,既有CNN、RNN、DBN等深度学习算法,也有的GBDT、FFM等传统机器学习算法。用户可以用这些算法训练自己的模型,支持业务,比如图象识别、语音识别、精准推荐和实时风控等等。

TI-ONE为用户提供了一个图形化开发界面,以拖拽方式就能开发一个机器学习算法,这里我给一个例子,

  • 从COS层或本地文件系统中获得数据
  • 对数据进行预处理
  • 对数据进行切分,这里需要指出的是,这里是将数据切分成训练集和验证集,而不是测试集
  • 然后用拖拽的方式选择一种算法,以逻揖回归为例
  • 设置算法需要的参数
  • 训练得到模型

如果要验证这个算法也很简单,只要:

  • 从存储层中获得数据
  • 对数据进行预处理
  • 输入到模型
  • 算法评估

运行完成后会给出混淆矩阵和AUC值。

调参是机器学习的重要环节,而且非常具有技巧性,TI-ONE提供了自动化的调参工具,特点是通过参数组合产生多个实例,然后并行运行这些实例,从这些实例中选出效果最好的一个。

举个例子,假设你要训练一个随机森林,你要决定森林中树的棵数和训练每棵树所需要的特征数,只要给定一个参数组合,然后交给TI-ONE,TI-ONE可以帮你选择最好的组合。在另一些情况下,我们可能需要对一些正则化超参调优,我们只要给定一个范围,然后交给TI-ONE,TI-ONE就可以帮助我们选择最优的参数。

协作对于机器学习也很重要,TI-ONE提供了多个层面的协作。

第一是模型层面的分享,训练好的模型可以分享给你的同事。比如你们俩同时对同一个业务开发算法,想比较谁的精度更高,就可以互相分享这个模型。

第二是工作流层面的分享,工作流就是机器学习生命周期,分享工作流,就是分享整个机器学习生命周期。假设你前面做了一个皮肤推荐的任务,后来要做装备推荐的任务,基本上只要小改动就可以了。

第三是服务层面的共享,模型部署好后还可以共享,你可以把模型分享给后台人员,让他(她)帮你定位问题。

部署和服务是云上机器学习和传统学习的不同之处。TI-ONE提供了一键式部署工具。我们可以将训练好的模型部署成Application, 然后装载成多个实例,一个实例中还允许有不同版本。第三方的用户和模型的开发者就可以用REST API去调用,非常方便。

前面我们讲了TI-ONE的特点,开发者肯定想知道它背后的设计之道。我喜欢用冰山理论来解释事物背后的原理,前面看到的不管是工作流,还是调参,协作和部署工具,这些只是冰山一角,水下面是什么呢?

我们认为一部分原因是整合,我们整合了COS存储,整合了GaiaStack调度,整合了常用的机器学习框架和算法,但是仅仅整合还是不够,我们还需要自主研究构建差异化的竞争力,这个就是TI-ONE的特别之处。

第一个特别之处是Angel,Angel腾讯自研的机器学习的框架,它克服了Spark将模型放在单个节点的不足,通过对底层数学库的优化,它可以支持万亿级参数的模型,放眼业界,能支持如此大模型的计算框架也是凤毛菱角。

算法方面,我们实现了常用的传统机器学习算法,比如逻辑回归,SVM等等,其中还有一些是我们原创的, 如LAD* 就是我们发表在VLDB上的成果。

性能方面,我们比较了Angel和Spark, XGBoost等平台,发现Angel性能表现非常强悍。有些算法的性能是Spark的20+倍。

第二个特别之处是图计算算法,我们知道图计算领域有三个主要玩家,即Pregel,GraphLab,和GraphX,而Pregel是谷歌闭源,GraphLab是商业软件,只有GraphX是开源软件。但是GraphX更新慢,算法少,鉴于这种情况,我们就基于GraphX增加了很多图计算算法,有节点评价算法,社区发现算法,统计特征算法,经过细致的优化,这些算法都支持了千亿级规模的关系链。

第三个特别之处是支持用户自定义算法,前面提到我们集成了非常多的算法,有深度学习算法,也有传统学习机器算法,有回归算法,有分类算法,推荐算法等等,但是对于一些高级用户来说还是不够,所以我们允许用户自定义算法到TI-ONE执行,虽然是一个小功能,但是给用户带来很大的灵活性。

前面我们谈到了TI-ONE的功能和特别之处,现在要谈一谈商业用户比较关心的性质,严格来讲这个性质不是TI-ONE本身的,而是GaiaStack赋予的。

第一个是专用集群,当用户数据量较大时,我们可以提供多个完整集群让他使用,当用户的数据比较小的时候,可以多个用户共享集群,我们做了很好的多租户,用户的资源和数据隔离。支持热升级,业务不中断,用户无感知。支持主备自动切换的高可用,当服务量增大时,会自动加载新的实例,并自动负载均衡。

最后我们看看用户,我们公司内外都有很多的用户,在公司内比如腾讯游戏、微信、应用宝、QQ音乐等等都是我们的用户。

最后发个福利,大家可以通过扫码来获得试用或者文档。

更多有关TI-ONE详情,请点击下方获取。

TIOne腾讯云上的深度学习平台.pdf

问答

是否有.NET机器学习库,例如,可以为一个问题建议标记?

相关阅读

安利10个有趣实用的人工智能开源项目

区块链、人工智能和物联网之间是什么关系?

图像分析那些事︱AI来了

此文已由作者授权腾讯云+社区发布,原文链接:https://cloud.tencent.com/developer/article/1136172?fromSource=waitui

一站式机器学习平台TI-ONE是什么?——云+未来峰会开发者专场回顾的更多相关文章

  1. 新时代运维重器 Tencent Hub 最佳实践——云+未来峰会开发者专场回顾

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 演讲者:邹辉 腾讯云 PaaS 产品总监 背景:5月23-24日,以"焕启"为主题的腾讯"云+未来" ...

  2. TXSQL:云计算时代数据库核弹头——云+未来峰会开发者专场回顾

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 5月23-24日,以"焕启"为主题的腾讯"云+未来"峰会在广州召开,广东省各级政府机构领导.海内外业 ...

  3. 万物智联,腾讯云 IoT 边缘计算揭秘——云+未来峰会开发者专场回顾

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 背景:现在是万物互联的时代,智能穿戴设备,智能家居,无人商业,改变了我们的生活方式.预计到2021年,全球物联网设数将达到150亿,超过手机 ...

  4. 日调度万亿次,微服务框架TSF大规模应用——云+未来峰会开发者专场回顾

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 演讲者:张浩 腾讯云中间件产品负责人 背景:众多开发者中,一定经历类似的甜蜜烦恼,就是当线上业务规模越来越大,系统分支发展越来越多的时候,初 ...

  5. 腾讯云AI平台张文杰:构建一站式机器学习服务平台

    欢迎大家前往腾讯云+社区,获取更多腾讯海量技术实践干货哦~ 5月24日,以"无界数据无限智能"为主题的腾讯"云+未来"峰会AI大数据分论坛在广州拉开帷幕.此次分 ...

  6. 阿里重磅开源全球首个批流一体机器学习平台Alink,Blink功能已全部贡献至Flink

    11月28日,Flink Forward Asia 2019 在北京国家会议中心召开,阿里在会上发布Flink 1.10版本功能前瞻,同时宣布基于Flink的机器学习算法平台Alink正式开源,这也是 ...

  7. Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次)- 培训笔记3(机器学习平台)

    ylbtech-Train-Alypay-Cloud:蚂蚁大数据平台培训开课通知(第三次)- 培训笔记3(机器学习平台) 机器学习平台 一站式可视化机器学习 https://pai.cloud.ali ...

  8. CODING 2.0 服务升级:一站式服务体系助力企业研发上云

    近日,CODING 在 KubeCon 2019 上海站上正式推出了 DevOps 的一站式解决方案: CODING 2.0,除了进行 产品 及 产品理念 的升级,还对用户服务进行了整体升级,主要涵盖 ...

  9. 一站式自动化测试平台 http://www.Autotestplat.com

    Autotestplat 一站式自动化测试平台及解决方案 自动化平台开发 3.1 自动化平台开发方案 3.1.1 功能需求 支持 API.AppUI.WebUI 性能等自动化测试,集成实现测试用例管理 ...

随机推荐

  1. SlidesJS基本使用方法和官方文档解释

    Slides – 是一个简单的,容易定制和风格化,的jQuery幻灯片插件. Slides提供褪色或幻灯片过渡效果,图像淡入淡出,图像预压,自动生成分页,循环,自动播放的自定义等很多选项. 用Slid ...

  2. Django-01Django简介

    1 MVC与MTV模型 MVCWeb服务器开发领域里著名的MVC模式,所谓MVC就是把Web应用分为模型(M),控制器(C)和视图(V)三层,他们之间以一种插件式的.松耦合的方式连接在一起,模型负责业 ...

  3. 51nod-迷宫问题(Dijkstra算法)

    关于Dijkstra算法的博文 http://www.cnblogs.com/skywang12345/p/3711512.html#anchor2 Dijkstra算法是一个经典的算法——他是荷兰计 ...

  4. [ActionScript 3.0] flash中的颜色

    在 Flash 中,颜色就是一串特殊的数字,一个颜色值可以是0到16,777,215中的任意数值,这就是24位(bit)色彩.也许大家会问,为什么有16,777,216(256*256*256)种颜色 ...

  5. WordPress翻译更新失败解决方法

    编辑php的配置文件:php.ini,搜索并找到disable_functions: 删除disable_functions后面的scandir字符串,保存php.ini: 重载或重启php-fpm服 ...

  6. ElasticSearch 从2.2升级到6.2.4所碰到的问题汇总

    1.ID的问题. 以前创建索引API直接用URL加索引Post过去就行了,或者在Kibana的开发工具中提交命令 PUT /customer?pretty 但是发现这样即使生成了索引,在ES中预览能看 ...

  7. getLong not implemented for class oracle.jdbc.driver.T4CRowidAccessor

    症状: SpringMVC+MyBatis向数据库插入数据,主键应用ORACLE中自己设置的自增序列会发生如下错误: nested exception is Java.sql.SQLException ...

  8. python全栈开发_day8_文件的多种读写方式及游标

    一:文件的多种读写方式 主方式:w    r    a 从方式:t     b    + 了解方式:x    u 1)按t(按照字符进行操作): with open("data_1.txt& ...

  9. Q678 有效的括号字符串

    给定一个只包含三种字符的字符串:(,) 和 *,写一个函数来检验这个字符串是否为有效字符串.有效字符串具有如下规则: 任何左括号 ( 必须有相应的右括号 ). 任何右括号 ) 必须有相应的左括号 ( ...

  10. JavaSwing概述

    GUI(Graphic User Interface)为程序提供图形界面,它最初的设计目的是构建一个通用的GUI,使其能在所有平台上运行.在Java1.0中基础类AWT(Abstract Window ...