Kruskal算法-最小生成树
2017-07-26 10:32:07
writer:pprp
Kruskal算法是根据边的加权值以递增的方式,一次找出加权值最低的边来建最小生成树;并且每次添加的边不能造成生成树有回路,直到找到N-1个边为止;
适用范围:边集比较少的时候,可以考虑用这个方法;
做法:将图形中所有的边的权值,递增排序(快速排序),按从小到大,依次将邻接边加入到生成树中,加入的生成树不能有回路,直到N-1个边;
还用到了并查集;
代码如下:
#include <iostream> using namespace std; const int MAXN = ;
const int INF = ;
int n,e;// n是点的数量,e是边的数量
int x[MAXN],y[MAXN],w[MAXN];
int parent[MAXN]; int Find(int x)
{
if(parent[x] == x)
return x;
else
return parent[x] = Find(parent[x]);
} void Merge(int a,int b)
{
int pa = Find(a);
int pb = Find(b);
if(pb < pa)
swap(pb,pa);
if(pa!=pb)
parent[pa] = pb;
} void kruskal()
{
int i,p,ans; //p是已经加入的边数,ans是加入边的边权之和 for(i = ; i<=n ; i++) //initialize
{
parent[i] = i;
} p = ;
ans = ; for(i = ; i <= e; i++)
{
if(Find(x[i])!=Find(y[i]))// 两点没有在同一个集合中,归并两个集合
{
ans += w[i];
Merge(x[i],y[i]);
p++;
if(p == n) //这里不是n-1,因为初始化的时候,p = 1
{
cout << ans << endl;
return;
}
}
}
return;
} void sort(int i, int j)
{
if(i >=j)
return;
int m,n,k;
m = i;
n = j;
k = w[(i+j)>>];
while(m <= n)
{
while(w[m]<k)
m++;
while(w[n]>k)
n--;
if(m <= n)
{
swap(x[m],x[n]);
swap(y[m],y[n]);
swap(w[m],w[n]);
m++;
n--;
}
}
sort(i,n);
sort(m,j);
} int main()
{
int i,j;
cin >> n >> e;
for(i = ; i <= e ; i++)
{
cin >> x[i] >> y[i] >> w[i];
} sort(,e); kruskal(); return ;
}
这个sort函数比较有特点,sort函数根据权值w[MAXN]的大小进行判断,交换的时候将x[MAXN],y[MAXN]都交换了,相当于将 x,y,w对应起来;
图例描述:参考:http://www.cnblogs.com/biyeymyhjob/archive/2012/07/30/2615542.html
首先第一步,我们有一张图Graph,有若干点和边

将所有的边的长度排序,用排序的结果作为我们选择边的依据。这里再次体现了贪心算法的思想。资源排序,对局部最优的资源进行选择,排序完成后,我们率先选择了边AD。这样我们的图就变成了右图
在剩下的变中寻找。我们找到了CE。这里边的权重也是5
依次类推我们找到了6,7,7,即DF,AB,BE。

下面继续选择, BC或者EF尽管现在长度为8的边是最小的未选择的边。但是现在他们已经连通了(对于BC可以通过CE,EB来连接,类似的EF可以通过EB,BA,AD,DF来接连)。所以不需要选择他们。类似的BD也已经连通了(这里上图的连通线用红色表示了)。
Kruskal算法-最小生成树的更多相关文章
- POJ-2349(kruskal算法+最小生成树中最大边的长度)
Arctic POJ-2349 这题是最小生成树的变形题目.题目的意思是已经有s个卫星频道,这几个卫星频道可以构成一部分的网络,而且不用费用,剩下的需要靠d的卫星接收器.题目要求的就是最小生成树中,最 ...
- 最小生成树---Prim算法和Kruskal算法
Prim算法 1.概览 普里姆算法(Prim算法),图论中的一种算法,可在加权连通图里搜索最小生成树.意即由此算法搜索到的边子集所构成的树中,不但包括了连通图里的所有顶点(英语:Vertex (gra ...
- 最小生成树的Kruskal算法实现
最近在复习数据结构,所以想起了之前做的一个最小生成树算法.用Kruskal算法实现的,结合堆排序可以复习回顾数据结构.现在写出来与大家分享. 最小生成树算法思想:书上说的是在一给定的无向图G = (V ...
- 最小生成树——kruskal算法
kruskal和prim都是解决最小生成树问题,都是选取最小边,但kruskal是通过对所有边按从小到大的顺序排过一次序之后,配合并查集实现的.我们取出一条边,判断如果它的始点和终点属于同一棵树,那么 ...
- 贪心算法-最小生成树Kruskal算法和Prim算法
Kruskal算法: 不断地选择未被选中的边中权重最轻且不会形成环的一条. 简单的理解: 不停地循环,每一次都寻找两个顶点,这两个顶点不在同一个真子集里,且边上的权值最小. 把找到的这两个顶点联合起来 ...
- Prim算法和Kruskal算法(图论中的最小生成树算法)
最小生成树在一个图中可以有多个,但是如果一个图中边的权值互不相同的话,那么最小生成树只可能存在一个,用反证法很容易就证明出来了. 当然最小生成树也是一个图中包含所有节点的权值和最低的子图. 在一个图中 ...
- 邻接矩阵c源码(构造邻接矩阵,深度优先遍历,广度优先遍历,最小生成树prim,kruskal算法)
matrix.c #include <stdio.h> #include <stdlib.h> #include <stdbool.h> #include < ...
- 最小生成树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind
最小支撑树树--Prim算法,基于优先队列的Prim算法,Kruskal算法,Boruvka算法,“等价类”UnionFind 最小支撑树树 前几节中介绍的算法都是针对无权图的,本节将介绍带权图的最小 ...
- 最小生成树Kruskal算法
Kruskal算法就是把图中的所有边权值排序,然后从最小的边权值开始查找,连接图中的点,当该边的权值较小,但是连接在途中后会形成回路时就舍弃该边,寻找下一边,以此类推,假设有n个点,则只需要查找n-1 ...
随机推荐
- 【BZOJ3813】奇数国 线段树+欧拉函数
[BZOJ3813]奇数国 Description 给定一个序列,每次改变一个位置的数,或是询问一段区间的数的乘积的phi值.每个数都可以表示成前60个质数的若干次方的乘积. Sample Input ...
- resolution will not be reattempted until the update interval of vas has elap
转自:http://kia126.iteye.com/blog/1785120 maven在执行过程中抛错: 引用 ... was cached in the local repository, re ...
- hdu 3047 Zjnu Stadium 并查集高级应用
Zjnu Stadium Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) Tot ...
- javaweb项目中嵌入webservice--axis2
由于最近项目中需要搭建webservice服务端,由于原项目是javaweb项目,所以需要整合.之前用cxf试了,启动老是报错,maven依赖冲突.后来索性换成axis2 百度了一圈,下面这个博客 h ...
- Redis核心解读(转)
原文:Redis核心解读 Redis是知名的键值数据库,它广泛用于缓存系统.关于Redis的信息已经不用我多介绍了.这个系统的Redis文章主要从另外一个角度关注,Redis作为一个开源项目,短短2W ...
- Django组件 - Django请求生命周期、中间件
一.Django请求生命周期 在学习中间件之前,先了解一下Django的请求生命周期,如下图: 1)client代表浏览器,浏览器内部为我们封装了socket,Django的WSGI模块也封装了soc ...
- Java中对Clone的理解
面试中经常遇到Clone的相关知识,今天总算是把Clone理解的比较透彻了!Java中Clone的概念大家应该都很熟悉了,它可以让我们很方便的“制造”出一个对象的副本来,下面来具体看看java中的Cl ...
- oracle创建表空间、用户和表以及sys和system的区别
一.oracle的3个内置账号(口令管理)scott(示范账户) tiger 内置账号system 系统管理员 操作用户sys 超级管理员 操作数据 conn system/sasa;show use ...
- Android 实现瀑布流的两种思路
瀑布流怎么样我就不多介绍了.下面说说我想到的两个方法. 方法一,控件的叠加: ScrollView+LinearLayout.在ScrollView里面加一个水平方向的LinearLayout,在水平 ...
- Spark SQL原理和实现--王家林老师