Kernel Memory 入门系列: Embedding 简介
Kernel Memory 入门系列: Embedding 简介
在 RAG模式 其实留了一个问题。
我们对于的用户问题的理解和文档的检索并没有提供合适的方法。

当然我们可以通过相对比较传统的方法。
例如对用户的问题进行关键词提取,然后通过关键词检索文档。这样的话,就需要我们提前对文档做好相关关键词的标注,同时也需要关键词能够覆盖到用户可能的提出方式以及表达方法。这样的话,就需要我们对用户的问题有一个很好的预测。用户也需要在提问的时候,能够按照我们的预期进行提问。我们和用户双向猜测,双向奔赴,如果猜对了,那么就可以得到一个比较好的结果。如果猜错了,结果难以想象。
那么有没有一种方法,能够让我们不需要对用户的问题进行预测,也不需要对文档进行关键词标注,就能够得到一个比较好的结果呢?
这个答案就是 Embedding。
Embedding 是什么
Embedding 是一种将高维数据映射到低维空间的方法。在这个低维空间中,数据的相似性和原始空间中的相似性是一致的。这样的话,我们就可以通过低维空间中的相似性来进行检索。
通俗的理解,大语言模型基于大量的文本数据进行训练,得到了一个高维的向量空间,我们可以认为这是一个语义的空间。在这个语义空间中,每一个词或者每个句子都有一个对应的空间坐标。虽然这个坐标系的维度是非常高的,起码都是上百甚至上千的维度,但是我们仍可以想象在二维或者三维空间中的点去理解这个坐标。
然后,我们就可以通过这个向量来判断两段文字是否相似。如果两段文字的向量越接近,那么这两个词的语义就越接近。例如,猫 和 狗 的向量就会比 猫 和 苹果 的向量更加接近。

这个空间坐标和模型的关系更加密切,模型越强大,对于语义的理解越深刻,那么这个空间坐标的效果就越好。所以,寻找或者训练一个好的Embedding模型对于实现一个好的检索系统是非常重要的。
使用Embedding进行匹配
有了Embedding的结果之后,我们就可以看如何使用Embedding进行匹配了。
首先我们需要对用户的提问和我们的文本进行Embedding,得到对应的向量。
通过计算问题的向量与文本的向量的相似性,通常是余弦相似度计算,我们就可以得到一个排序的结果。这个排序的结果就是我们的检索结果。
根据实际模型的表现,选择合适的相似度阈值,然后就可以找到最为相似的内容了。

参考
Kernel Memory 入门系列: Embedding 简介的更多相关文章
- saltstack之基础入门系列文章简介
使用saltstack已有一段时间,最近由于各种原因,特来整理了saltstack基础入门系列文章,已备后续不断查阅(俗话说好记性不如烂笔头),也算是使用此工具的一个总结.saltstack的前六篇文 ...
- Semantic Kernel 入门系列:🥑Memory内存
了解的运作原理之后,就可以开始使用Semantic Kernel来制作应用了. Semantic Kernel将embedding的功能封装到了Memory中,用来存储上下文信息,就好像电脑的内存一样 ...
- C#刷遍Leetcode面试题系列连载(1) - 入门与工具简介
目录 为什么要刷LeetCode 刷LeetCode有哪些好处? LeetCode vs 传统的 OJ LeetCode刷题时的心态建设 C#如何刷遍LeetCode 选项1: VS本地Debug + ...
- Android视频录制从不入门到入门系列教程(一)————简介
一.WHY Android SDK提供了MediaRecorder帮助开发者进行视频的录制,不过这个类很鸡肋,实际项目中应该很少用到它,最大的原因我觉得莫过于其输出的视频分辨率太有限了,满足不了项目的 ...
- 快速入门系列--WebAPI--03框架你值得拥有
接下来进入的是俺在ASP.NET学习中最重要的WebAPI部分,在现在流行的互联网场景下,WebAPI可以和HTML5.单页应用程序SPA等技术和理念很好的结合在一起.所谓ASP.NET WebAPI ...
- linux入门系列12--磁盘管理之分区、格式化与挂载
前面系列文章讲解了VI编辑器.常用命令.防火墙及网络服务管理,本篇将讲解磁盘管理相关知识. 本文将会介绍大量的Linux命令,其中有一部分在"linux入门系列5--新手必会的linux命令 ...
- 数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例)
数据挖掘入门系列教程(三)之scikit-learn框架基本使用(以K近邻算法为例) 简介 scikit-learn 估计器 加载数据集 进行fit训练 设置参数 预处理 流水线 结尾 数据挖掘入门系 ...
- 数据挖掘入门系列教程(十一)之keras入门使用以及构建DNN网络识别MNIST
简介 在上一篇博客:数据挖掘入门系列教程(十点五)之DNN介绍及公式推导中,详细的介绍了DNN,并对其进行了公式推导.本来这篇博客是准备直接介绍CNN的,但是想了一下,觉得还是使用keras构建一个D ...
- Go语言入门系列(五)之指针和结构体的使用
Go语言入门系列前面的文章: Go语言入门系列(二)之基础语法总结 Go语言入门系列(三)之数组和切片 Go语言入门系列(四)之map的使用 1. 指针 如果你使用过C或C++,那你肯定对指针这个概念 ...
- 机器学习系列入门系列[七]:基于英雄联盟数据集的LightGBM的分类预测
1. 机器学习系列入门系列[七]:基于英雄联盟数据集的LightGBM的分类预测 1.1 LightGBM原理简介 LightGBM是2017年由微软推出的可扩展机器学习系统,是微软旗下DMKT的一个 ...
随机推荐
- Understanding UML in seconds
UML 是一种分析设计语言,也就是一种建模语言. UML结构解析 UML其结构主要包括以下几个部分: 视图(View) 多个图形组成的集合: 图(Diagram) 图的种类有13种图,但常用的也就两种 ...
- MySQL 表分区使用实践
在使用 MySQL 8.0 表分区时,需要注意以下一些关键事项和最佳实践: 支持的存储引擎: MySQL 8.0 表分区仅支持一些特定的存储引擎,如 InnoDB 和 NDB(NDB 是 MySQL ...
- 「hackerrank - 101hack43」K-Inversion Permutations
link. 原问题即:请你给出不同的序列 \(\{a_n\}\) 的数量,满足 \(0\leqslant a_i<i\),且 \(\sum a_i=k\). 那么写出 \({a_n}\) 的 o ...
- mpi转以太网连接200plc通信不上实际问题和解决方法
西门子S7200plc通信不上实际问题和解决方法 现场通信的同学在现场调试的时候,现在特别是做项目改造的项目,西门子S7200plc通信面临淘汰,但是在改造的项目中还能经常看到他们的身影,下面我们就来 ...
- 如何在Nuxt3.0中使用MongoDB数据库
如何在Nuxt3.0中使用MongoDB数据库 一.介绍 Nuxt.js 是一个基于 Vue.js 的开源框架,用于构建服务端渲染 (Server-Side Rendering, SSR) 或静态生成 ...
- Linux系列教程——Shell、Linux文件管理
文章目录 Shell 1.什么是Bash shell(壳) 2.Bash Shell能干什么? 3.平时我们如何使用Shell呢? 4.Shell提示符 5.Shell基础语法 2.Bash Shel ...
- Python并发编程——操作系统发展史、多道技术、进程理论、开启进程、join方法、进程间的数据隔离
文章目录 必备知识回顾 今日内容详细 操作系统发展史 多道技术 必备知识点 多道技术图解 多道技术重点知识 进程理论 必备知识点 进程调度 进程运行的三状态图 两对重要概念 开启进程的两种方式 joi ...
- How to Install Python on Linux
Summary Hostmonster uses the preinstalled version of Python that ships with CentOS. Because of this ...
- ChatGPT 是如何产生心智的?
一.前言 - ChatGPT真的产生心智了吗? 来自斯坦福大学的最新研究结论,一经发出就造成了学术圈的轰动,"原本认为是人类独有的心智理论(Theory of Mind,ToM),已经出现在 ...
- vue项目打包,解决静态资源无法加载和路由加载无效(404)问题
打包后的项目静态资源无法使用,导致页面空白 静态资源无法使用,那就说明项目打包后,图片和其他静态资源文件相对路径不对,此时找到config里面的index.js,在build模块下加入assetsPu ...