Solution -「SP 106」BINSTIRL
Description
Link.
求 \(\begin{Bmatrix}n \\ m\end{Bmatrix}\bmod2\)
Solution
求
\begin{Bmatrix}n \\ m\end{Bmatrix}\bmod2
&=\left(\begin{Bmatrix}n-1 \\ m-1\end{Bmatrix}+m\begin{Bmatrix}n-1 \\ m\end{Bmatrix}\right)\bmod2 \\
&=\begin{cases}
\begin{Bmatrix}n-1 \\ m-1\end{Bmatrix}\bmod2,m\equiv0\space(\operatorname{mod}2) \\
\left(\begin{Bmatrix}n-1 \\ m-1\end{Bmatrix}+\begin{Bmatrix}n-1 \\ m\end{Bmatrix}\right)\bmod2,m\equiv1\space(\operatorname{mod}2)
\end{cases}
\end{aligned}
\]
\(m\equiv1\space(\operatorname{mod}2)\) 的情况为组合数的递推。
转化一下,把填表转移换成刷表,即
当 \(m\equiv0\space(\operatorname{mod}2)\) 时,\(\begin{Bmatrix}n \\ m\end{Bmatrix}\) 转移到 \(\begin{Bmatrix}n+1 \\ m+1\end{Bmatrix}\)。
当 \(m\equiv1\space(\operatorname{mod}2)\) 时,\(\begin{Bmatrix}n \\ m\end{Bmatrix}\) 转移到 \(\begin{Bmatrix}n+1 \\ m+1\end{Bmatrix}\) 和 \(\begin{Bmatrix}n+1 \\ m\end{Bmatrix}\)。
那么这个题目就转化成了在表格上 \((0,0)\) 走到 \((n,m)\) 的路径条数 \(\operatorname{mod}2\) 问题。
两种情况都可以转移到 \(\begin{Bmatrix}n+1 \\ m+1\end{Bmatrix}\),为了方便起见,我们定义这种情况为向右上转移,把 \(\begin{Bmatrix}n+1 \\ m\end{Bmatrix}\) 定义为向上转移。
因为我们转移只能向上或右上走,所以只会走 \(n\) 步,其中 \(m\) 次向右上转移,\(n-m\) 次向右转移。
我们一共有 \(\lfloor\frac{m+1}{2}\rfloor\) 次机会向右转移(只能从奇数走)。
相当于我们现在需要把转移的过程分成 \(n-m\) 段,每一段的内部全部都是向右上转移,这样我们才能到达 \((n,m)\)。
用盒子与球的语言来描述,就是一共就有 \(n-m+\lfloor\frac{m+1}{2}\rfloor\) 个球(这里理解起来其实特别麻烦)(不过只是对于我这种组合差的人),分成 \(\lfloor\frac{m+1}{2}\rfloor\) 段,隔板即可。
于是 \(\begin{Bmatrix}n \\ m\end{Bmatrix}\bmod2={n-m+\lfloor\frac{m+1}{2}\rfloor-1\choose\lfloor\frac{m+1}{2}\rfloor-1}\bmod2\)。
关于组合数奇偶性,我这篇博客里写过,再贴上来:
结论:\(\dbinom{n}{m}\equiv0\space(\operatorname{mod}2)\) 当且仅当 \(n\operatorname{bitand}m=m\)。
证明(也许不是特别严谨):我们可以知道:
\]
我们发现:
\]
这一坨,就是在一直进行二进制移位,\(\operatorname{shr}1\)。
那么我们可以得出一个结论:如果对于我们记 \((n)_{k}\) 表示 \(n\) 在二进制意义下的第 \(k\) 位。\((n)_{k}\in[0,1]\)
那么对于 \(\forall i\),有 \((n)_{i}=0\) 且 \((m)_{i}=1\),那么 \(\dbinom{n}{m}\equiv0\space(\operatorname{mod} 2)\)。
所以 \(n\operatorname{bitand}m=m\),证毕。
答案显然。
#include <cstdio>
int N, M;
int main () {
int TC; scanf ( "%d", &TC ); while ( TC -- > 0 ) {
scanf ( "%d%d", &N, &M );
if ( ! N && ! M ) puts ( "1" );
else if ( ! N || ! M || N < M ) puts ( "0" );
else if ( ( ( N - M + ( ( M + 1 ) >> 1 ) - 1 ) & ( ( ( M + 1 ) >> 1 ) - 1 ) ) == ( ( ( M + 1 ) >> 1 ) - 1 ) ) puts ( "1" );
else puts ( "0" );
}
return 0;
}
Solution -「SP 106」BINSTIRL的更多相关文章
- Solution -「SP 6779」GSS7
\(\mathcal{Description}\) 给定一棵 \(n\) 个点的带点权树,\(q\) 次操作: 路径点权赋值. 询问路径最大子段和(可以为空). \(n,q\le10^5\). ...
- Solution -「ARC 104E」Random LIS
\(\mathcal{Description}\) Link. 给定整数序列 \(\{a_n\}\),对于整数序列 \(\{b_n\}\),\(b_i\) 在 \([1,a_i]\) 中等概率 ...
- Solution -「CTS 2019」「洛谷 P5404」氪金手游
\(\mathcal{Description}\) Link. 有 \(n\) 张卡牌,第 \(i\) 张的权值 \(w_i\in\{1,2,3\}\),且取值为 \(k\) 的概率正比于 \ ...
- Solution -「BZOJ 3812」主旋律
\(\mathcal{Description}\) Link. 给定含 \(n\) 个点 \(m\) 条边的简单有向图 \(G=(V,E)\),求 \(H=(V,E'\subseteq E)\ ...
- Solution -「CF 1342E」Placing Rooks
\(\mathcal{Description}\) Link. 在一个 \(n\times n\) 的国际象棋棋盘上摆 \(n\) 个车,求满足: 所有格子都可以被攻击到. 恰好存在 \(k\ ...
- Solution -「Gym 102759G」LCS 8
\(\mathcal{Description}\) Link. 给定 \(m\),和长度为 \(n\),字符集为大写字母的字符串 \(s\),求字符集相同且等长的字符串 \(t\) 的数量,使 ...
- Solution -「ZJOI 2019」「洛谷 P5326」开关
\(\mathcal{Description}\) Link. 有 \(n\) 个开关,初始时所有开关的状态为 \(0\).给定开关的目标状态 \(s_1,s_2,\cdots,s_n\).每 ...
- Solution -「简单 DP」zxy 讲课记实
魔法题位面级乱杀. 「JOISC 2020 Day4」治疗计划 因为是不太聪明的 Joker,我就从头开始理思路了.中途也会说一些和 DP 算法本身有关的杂谈,给自己的冗长题解找借口. 首先,治疗方案 ...
- Solution -「基环树」做题记录
写的大多只是思路,比较简单的细节和证明过程就不放了,有需者自取. 基环树简介 简单说一说基环树吧.由名字扩展可得这是一类以环为基础的树(当然显然它不是树. 通常的表现形式是一棵树再加一条非树边,把图画 ...
- Solution -「WC 2022」秃子酋长
\(\mathscr{Description}\) Link. (It's empty temporarily.) 给定排列 \(\{a_n\}\),\(q\) 次询问,每次给出 \([l,r ...
随机推荐
- Go语言如何判断两个对象是否相等
1. 引言 在编程中,判断两个对象是否相等是一项常见的任务,同时判断对象是否相等在很多情况下都非常重要,例如: 单元测试:编写单元测试时,经常需要验证函数的输出是否符合预期,这涉及到比较对象是否相等. ...
- 三路快排Java版(图文并茂思路分析)
快速排序 这里我们直接开始讲相对的最优解 带随机数的三路快排 好了,中间还有很多版本的快排,但是都有一些问题导致在某种极端情况下造成耗费时间极多. 基础快排:在序列本身有序的情况下复杂度为O(n²) ...
- maven从远程仓库下载依赖包失败(因权限问题导致)
背景 在学习rocketMq时,编译官方提供的可视化项目:rocketmq-dashboard,频频失败,报以下错误 Could not transfer artifact org.apache.ro ...
- Blazor前后端框架Known-V1.2.3
V1.2.3 Known是基于C#和Blazor开发的前后端分离快速开发框架,开箱即用,跨平台,一处代码,多处运行. Gitee: https://gitee.com/known/Known Gith ...
- UI自动化打开游览器失败 elenium.common.exceptions.SessionNotCreatedException: Message: session not created: This version of ChromeDriver only supports Chrome version 90
原因是: 驱动和当前游览器版本不一致 查看游览器版本: 下载对应驱动: http://npm.taobao.org/mirrors/chromedriver/ 在自己电脑上 找到原来驱动的存放位置 将 ...
- C语言循环坑 -- continue的坑
文章目录 前言 一.continue语法 1.continue的作用 2.语法 二.大坑项目 题目 分析 正确写法 三.进坑调试 第一种 第二种 总结 前言 在使用continue和break时,会出 ...
- study the docker network of macvlan
Introduce: 在 Macvlan 出现之前,我们只能为一块以太网卡添加多个 IP 地址,却不能添加多个 MAC 地址,因为 MAC 地址正是通过其全球唯一性来标识一块以太网卡的,即便你使用了创 ...
- git关于分支的常用命令
上家公司实习,一个人干一个项目,没有用git管理代码,导致我以前学的命令都忘了 git checkout -b xxx 创建xxx分支 并切换到xxx分支 等价于 git branch xxx git ...
- quarkus实战之七:使用配置
欢迎访问我的GitHub 这里分类和汇总了欣宸的全部原创(含配套源码):https://github.com/zq2599/blog_demos 本篇概览 本文是<quarkus实战>系列 ...
- 2021-11-30 WPF的MVVM绑定
主页面代码 public partial class MainWindow : Window { MainViewModel mainViewModel = null; public MainWind ...