描述

某一天 WJMZBMR 在打 osu~~~ 但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则:

有 \(n(n\le 300000)\) 次点击要做,成功了就是 o,失败了就是 x,分数是按 comb 计算的,连续 \(a\) 个 comb 就有 \(a^2\) 分,comb 就是极大的连续 o

比如 ooxxxxooooxxx,分数就是 \(2\times 2+4\times 4=4+16=20\)。

Sevenkplus 闲的慌就看他打了一盘,有些地方跟运气无关要么是 o 要么是 x,有些地方 o 或者 x 各有 \(50\%\) 的可能性,用 ? 号来表示。

那么 WJMZBMR 这场 osu 的期望得分是多少呢?

思路:

这个题如果一段一段的处理,实际上并不是很好做。我们观察到 \((x + 1) ^ 2 - x ^ 2 = 2x + 1\),那么根据期望的线性性质,我们可以单独算每一个字符的贡献。我们设 \(dp_i\) 为考虑前 ii 个字符的期望得分,\(l_i\) 为以 \(i\) 为结尾的 comb 的期望长度,\(Comb_i\) 为第 \(i\)个字符,那么有 3 种情况:

  1. \(s_i = o\) ,则 \(dp_i = dp_{i - 1} + l_{i - 1} * 2 + 1,l_i = l_{i - 1} + 1\)
  2. \(s_i = x\) ,则 \(dp_i = dp_{i - 1}\)
  3. \(s_i =\ ?\), 则 \(dP_i = dp_{i - 1} + \frac{l_i*2 + 1}{2},l_i = \frac{l_{i - 1} + 1}{2}\)

对于前两种情况,其实是非常直观的,对于第三种情况,实际上是求了一个平均长度。例如 ?oo,两种情况的长度 \(l_i\) 分别为 \([0,1,2]\) 和 \([1,2,3]\) ,但是求了平均之后,长度 \(l_i\) 变成了 \([0.5,1.5,2.5]\) ,这样由于我们的贡献是一个关于长度的一次多项式 \((2x + 1)\) ,所以长度平均之后,贡献也相当于求了一个平均,自然能够求得正确的得分期望。

【AC Code】

const int N = 3e5 + 10;
double dp[N], Comb[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n; string s;
cin >> n >> s;
for (int i = 0; i < n; ++i) {
if (s[i] == 'o') {
dp[i] = dp[i - 1] + Comb[i - 1] * 2 + 1;
Comb[i] = Comb[i - 1] + 1;
} else if (s[i] == 'x') {
dp[i] = dp[i - 1];
Comb[i] = 0;
} else {
dp[i] = dp[i - 1] + (Comb[i - 1] * 2 + 1) / 2;
Comb[i] = (Comb[i - 1] + 1) / 2;
}
}
cout << setprecision(4) << fixed << dp[n - 1];
}

思考:如果长度为 \(a\) 的 comb 的贡献为 \(a^3\) 时该如何解决?题目链接:Here

Tips:由于 \((a + 1)^3 - a^3 = 3a^3 + 3a + 1\) ,所以我们要维护 \(a^2\) 和 \(a\) 的期望,注意 \(E_{a^2} \not= E^2_a\),所以维护 \(a^2\) 的期望是必要的。

BZOJ 3450 - Tyvj1952 Easy (期望DP)的更多相关文章

  1. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

  2. Bzoj 3450: Tyvj1952 Easy (期望)

    Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status] ...

  5. bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy

    这俩题太像了 bzoj 3450 Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点 ...

  6. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  7. BZOJ 3450 Tyvj1952 Easy(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...

  8. BZOJ 3450: Tyvj1952 Easy [DP 概率]

    传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...

  9. BZOJ 3450: Tyvj1952 Easy 数学期望

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  10. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

随机推荐

  1. JAVAweek5

    学习内容 进制 1.(十进制):752=2*10(0)+5*10(1)0+7*10(2)=752 (二进制):1011(二进制的数)=1*2(0)+1*2(1)+0*2(2)+1*2(3)   = 1 ...

  2. 【javaweb】integer是什么意思?integer和int的区别

    1.数据类型不同:int是基础数据类型,而integer是包装数据类型 2.默认值不同:int的默认值是0,而integer的默认值是null 3.内存中存储的方式不同:int 在内存中直接存储的是数 ...

  3. MINA框架

    一.小程序MINA框架分为三个部分: 有 View(视图层).App Service(逻辑层)和 Natice(系统层). 1.View(视图层) 视图层包含了小程序多个页面.每个页面都有WXML文件 ...

  4. 明解Java第一章练习题答案

    @ 目录 练习1-1 练习1-2 练习1-3 <明解Java>书籍其他章节答案 练习1-1 如果没有表示程序语句末尾的分号,结果会怎么样呢?请编译程序进行确认. 答:编译器报错 练习1-2 ...

  5. Go:条件控制语句

    在 Go 语言中,主要的条件控制语句有 if-else.switch 和 select.以下是对它们的简单介绍: 1. if 语句: if 语句用于根据条件执行不同的代码块.它的基本形式如下: if ...

  6. Cocos Creator性能调优

    一. 为什么要做性能优化 性能:是程序的一种优秀的能力.唤醒快.运行持久.稳定 这种能力正在游戏上能让你的用户感觉很爽,特征表现为加载快.运行流畅.不卡顿. 所以,性能优化的终极目标是,让你的用户体验 ...

  7. 如何利用烛龙和谷歌插件优化CLS(累积布局偏移)

    简介 CLS 衡量的是页面的整个生命周期内发生的每次意外布局偏移的最大突发性_布局偏移分数_.布局变化的发生是因为浏览器倾向于异步加载页面元素.更重要的是,您的页面上可能存在一些初始尺寸未知的媒体元素 ...

  8. 35. 干货系列从零用Rust编写负载均衡及代理,代理服务器的源码升级改造

    wmproxy wmproxy已用Rust实现http/https代理, socks5代理, 反向代理, 静态文件服务器,四层TCP/UDP转发,七层负载均衡,内网穿透,后续将实现websocket代 ...

  9. C++ Qt开发:Charts折线图绘制详解

    Qt 是一个跨平台C++图形界面开发库,利用Qt可以快速开发跨平台窗体应用程序,在Qt中我们可以通过拖拽的方式将不同组件放到指定的位置,实现图形化开发极大的方便了开发效率,本章将重点介绍QCharts ...

  10. C#如何对List中的Object进行排序

    首先定义一个List类,这个类里面包含了Name和Total两个属性变量,下面就是针对这两个变量进行排序. public class Player { public string Name { get ...