BZOJ 3450 - Tyvj1952 Easy (期望DP)
描述
某一天 WJMZBMR 在打 osu~~~ 但是他太弱逼了,有些地方完全靠运气:(
我们来简化一下这个游戏的规则:
有 \(n(n\le 300000)\) 次点击要做,成功了就是 o,失败了就是 x,分数是按 comb 计算的,连续 \(a\) 个 comb 就有 \(a^2\) 分,comb 就是极大的连续 o。
比如 ooxxxxooooxxx,分数就是 \(2\times 2+4\times 4=4+16=20\)。
Sevenkplus 闲的慌就看他打了一盘,有些地方跟运气无关要么是 o 要么是 x,有些地方 o 或者 x 各有 \(50\%\) 的可能性,用 ? 号来表示。
那么 WJMZBMR 这场 osu 的期望得分是多少呢?
思路:
这个题如果一段一段的处理,实际上并不是很好做。我们观察到 \((x + 1) ^ 2 - x ^ 2 = 2x + 1\),那么根据期望的线性性质,我们可以单独算每一个字符的贡献。我们设 \(dp_i\) 为考虑前 ii 个字符的期望得分,\(l_i\) 为以 \(i\) 为结尾的 comb 的期望长度,\(Comb_i\) 为第 \(i\)个字符,那么有 3 种情况:
- \(s_i = o\) ,则 \(dp_i = dp_{i - 1} + l_{i - 1} * 2 + 1,l_i = l_{i - 1} + 1\)
- \(s_i = x\) ,则 \(dp_i = dp_{i - 1}\)
- \(s_i =\ ?\), 则 \(dP_i = dp_{i - 1} + \frac{l_i*2 + 1}{2},l_i = \frac{l_{i - 1} + 1}{2}\)
对于前两种情况,其实是非常直观的,对于第三种情况,实际上是求了一个平均长度。例如 ?oo,两种情况的长度 \(l_i\) 分别为 \([0,1,2]\) 和 \([1,2,3]\) ,但是求了平均之后,长度 \(l_i\) 变成了 \([0.5,1.5,2.5]\) ,这样由于我们的贡献是一个关于长度的一次多项式 \((2x + 1)\) ,所以长度平均之后,贡献也相当于求了一个平均,自然能够求得正确的得分期望。
【AC Code】
const int N = 3e5 + 10;
double dp[N], Comb[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n; string s;
cin >> n >> s;
for (int i = 0; i < n; ++i) {
if (s[i] == 'o') {
dp[i] = dp[i - 1] + Comb[i - 1] * 2 + 1;
Comb[i] = Comb[i - 1] + 1;
} else if (s[i] == 'x') {
dp[i] = dp[i - 1];
Comb[i] = 0;
} else {
dp[i] = dp[i - 1] + (Comb[i - 1] * 2 + 1) / 2;
Comb[i] = (Comb[i - 1] + 1) / 2;
}
}
cout << setprecision(4) << fixed << dp[n - 1];
}
思考:如果长度为 \(a\) 的 comb 的贡献为 \(a^3\) 时该如何解决?题目链接:Here
Tips:由于 \((a + 1)^3 - a^3 = 3a^3 + 3a + 1\) ,所以我们要维护 \(a^2\) 和 \(a\) 的期望,注意 \(E_{a^2} \not= E^2_a\),所以维护 \(a^2\) 的期望是必要的。
BZOJ 3450 - Tyvj1952 Easy (期望DP)的更多相关文章
- BZOJ 3450 Tyvj1952 Easy ——期望DP
维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...
- Bzoj 3450: Tyvj1952 Easy (期望)
Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...
- bzoj 3450 Tyvj1952 Easy (概率dp)
3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...
- Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划
3450: Tyvj1952 Easy Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 431 Solved: 325[Submit][Status] ...
- bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy
这俩题太像了 bzoj 3450 Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点 ...
- 【BZOJ3450】Tyvj1952 Easy 期望DP
[BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...
- BZOJ 3450 Tyvj1952 Easy(期望)
[题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...
- BZOJ 3450: Tyvj1952 Easy [DP 概率]
传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...
- BZOJ 3450: Tyvj1952 Easy 数学期望
Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...
- 【概率】BZOJ 3450:Tyvj1952 Easy
Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...
随机推荐
- Serializable是什么?为什么在Entity层要实现Serializable接口
我在做房产信息管理系统时用到了Serializable接口 Serializable含义: 一个对象序列化的接口,一个类只有实现了Serializable接口,它的对象才能被序列化. Serializ ...
- 洛谷5789 [TJOI2017]可乐(矩阵快速幂,Floyd思想)
题意:可乐机器人有三种行为: 停在原地,去下一个相邻的城市,自爆.它每一秒都会随机触发一种行为.现在给加里敦星球城市图,在第 0秒时可乐机器人在 1号城市,问经过了 t秒,可乐机器人的行为方案数是多少 ...
- Navicat远程连接Centos8.4服务器MySQL8.0数据库
一.首先登陆服务器后台管理,使服务器开放3306策略 二.开启远程连接 1.登陆服务器的MySQL数据库 mysql -uroot -p 2.登录成功后,切换数据库 use mysql; 3.查看当前 ...
- 什么是RPC协议
工作的时候,第一次接触CRPC协议,当时就很懵,啥是CRPC协议,一脸懵逼,于是就到网上去搜,填充知识空缺. 不少解释显得非常官方,我相信大家在各种平台上也都看到过,解释了又好像没解释,都在用一个我们 ...
- [ABC262G] LIS with Stack
Problem Statement There is an empty sequence $X$ and an empty stack $S$. Also, you are given an inte ...
- UMP系统概述
突出性能: 1.低成本,高性能 2.开源数据库 UMP在设计时要实现一下原则: 多租户:
- 国产 Web 组态软件在玻璃生产线中的应用
概述 随着工厂信息化.数字化发展,智慧生产车间成为必然发展趋势,通过智能硬件.物联网.大数据等智慧化技术与手段,提高车间生产设备.工艺设备的智能执行能力,从而提升整个车间乃至工厂的智能化.网络化 ...
- 介绍一款轻量型 Web SCADA 组态软件
随着互联网.物联网技术的快速发展,图扑物联基于多年研发积累和私有部署实践打磨.以及对业务场景的深入理解,推出了适用于物联网应用场景的轻量型云组态软件. 该产品采用 B/S 架构,提供 Web 管理 ...
- 从零玩转EasyPoi-cong-ling-wan-zhuan-easypoi
title: 从零玩转EasyPoi date: 2023-01-11 13:49:25.908 updated: 2023-03-30 13:23:20.817 url: https://www.y ...
- 一个小巧、快速、轻量级的 .NET NoSQL 嵌入式数据库
前言 今天给大家分享一个小巧.快速.轻量级的 .NET NoSQL 嵌入式数据库:LiteDB.本篇文章主要是介绍LiteDB和在.NET中如何使用. LiteDB介绍 LiteDB 是一个小巧.快速 ...