描述

某一天 WJMZBMR 在打 osu~~~ 但是他太弱逼了,有些地方完全靠运气:(

我们来简化一下这个游戏的规则:

有 \(n(n\le 300000)\) 次点击要做,成功了就是 o,失败了就是 x,分数是按 comb 计算的,连续 \(a\) 个 comb 就有 \(a^2\) 分,comb 就是极大的连续 o

比如 ooxxxxooooxxx,分数就是 \(2\times 2+4\times 4=4+16=20\)。

Sevenkplus 闲的慌就看他打了一盘,有些地方跟运气无关要么是 o 要么是 x,有些地方 o 或者 x 各有 \(50\%\) 的可能性,用 ? 号来表示。

那么 WJMZBMR 这场 osu 的期望得分是多少呢?

思路:

这个题如果一段一段的处理,实际上并不是很好做。我们观察到 \((x + 1) ^ 2 - x ^ 2 = 2x + 1\),那么根据期望的线性性质,我们可以单独算每一个字符的贡献。我们设 \(dp_i\) 为考虑前 ii 个字符的期望得分,\(l_i\) 为以 \(i\) 为结尾的 comb 的期望长度,\(Comb_i\) 为第 \(i\)个字符,那么有 3 种情况:

  1. \(s_i = o\) ,则 \(dp_i = dp_{i - 1} + l_{i - 1} * 2 + 1,l_i = l_{i - 1} + 1\)
  2. \(s_i = x\) ,则 \(dp_i = dp_{i - 1}\)
  3. \(s_i =\ ?\), 则 \(dP_i = dp_{i - 1} + \frac{l_i*2 + 1}{2},l_i = \frac{l_{i - 1} + 1}{2}\)

对于前两种情况,其实是非常直观的,对于第三种情况,实际上是求了一个平均长度。例如 ?oo,两种情况的长度 \(l_i\) 分别为 \([0,1,2]\) 和 \([1,2,3]\) ,但是求了平均之后,长度 \(l_i\) 变成了 \([0.5,1.5,2.5]\) ,这样由于我们的贡献是一个关于长度的一次多项式 \((2x + 1)\) ,所以长度平均之后,贡献也相当于求了一个平均,自然能够求得正确的得分期望。

【AC Code】

const int N = 3e5 + 10;
double dp[N], Comb[N];
int main() {
cin.tie(nullptr)->sync_with_stdio(false);
int n; string s;
cin >> n >> s;
for (int i = 0; i < n; ++i) {
if (s[i] == 'o') {
dp[i] = dp[i - 1] + Comb[i - 1] * 2 + 1;
Comb[i] = Comb[i - 1] + 1;
} else if (s[i] == 'x') {
dp[i] = dp[i - 1];
Comb[i] = 0;
} else {
dp[i] = dp[i - 1] + (Comb[i - 1] * 2 + 1) / 2;
Comb[i] = (Comb[i - 1] + 1) / 2;
}
}
cout << setprecision(4) << fixed << dp[n - 1];
}

思考:如果长度为 \(a\) 的 comb 的贡献为 \(a^3\) 时该如何解决?题目链接:Here

Tips:由于 \((a + 1)^3 - a^3 = 3a^3 + 3a + 1\) ,所以我们要维护 \(a^2\) 和 \(a\) 的期望,注意 \(E_{a^2} \not= E^2_a\),所以维护 \(a^2\) 的期望是必要的。

BZOJ 3450 - Tyvj1952 Easy (期望DP)的更多相关文章

  1. BZOJ 3450 Tyvj1952 Easy ——期望DP

    维护$x$和$x^2$的期望递推即可 #include <map> #include <ctime> #include <cmath> #include <q ...

  2. Bzoj 3450: Tyvj1952 Easy (期望)

    Bzoj 3450: Tyvj1952 Easy 这里放上题面,毕竟是个权限题(洛谷貌似有题,忘记叫什么了) Time Limit: 10 Sec Memory Limit: 128 MB Submi ...

  3. bzoj 3450 Tyvj1952 Easy (概率dp)

    3450: Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是o,失败 ...

  4. Bzoj 3450: Tyvj1952 Easy 期望/概率,动态规划

    3450: Tyvj1952 Easy Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 431  Solved: 325[Submit][Status] ...

  5. bzoj4318 OSU!和bzoj 3450 Tyvj1952 Easy

    这俩题太像了 bzoj 3450 Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点 ...

  6. 【BZOJ3450】Tyvj1952 Easy 期望DP

    [BZOJ3450]Tyvj1952 Easy Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:(我们来简化一下这个游戏的规则有n次点击要做,成功了就是 ...

  7. BZOJ 3450 Tyvj1952 Easy(期望)

    [题目链接] http://www.lydsy.com/JudgeOnline/problem.php?id=3450 [题目大意] 给出一个字符串,包含o,x和?,一个字符串的得分为 每段连续的o的 ...

  8. BZOJ 3450: Tyvj1952 Easy [DP 概率]

    传送门 题意:$ox?$组成的序列,$?$等概率为$o\ or\ x$,得分为连续的$o$的长度的平方和,求期望得分 一开始没想出来,原因在于不知道如何记录长度 其实我们同时求得分和长度的期望就好了 ...

  9. BZOJ 3450: Tyvj1952 Easy 数学期望

    Code: #include <bits/stdc++.h> #define setIO(s) freopen(s".in","r",stdin) ...

  10. 【概率】BZOJ 3450:Tyvj1952 Easy

    Description 某一天WJMZBMR在打osu~~~但是他太弱逼了,有些地方完全靠运气:( 我们来简化一下这个游戏的规则 有n次点击要做,成功了就是o,失败了就是x,分数是按comb计算的,连 ...

随机推荐

  1. 搭建 MongoDB (v6.0) 副本集记录

    副本集概述 副本集(Replica Set)是一组带有故障转移的 MongoDB 实例组成的集群,由一个主(Primary)服务器和多个从(Secondary)服务器构成.通过Replication, ...

  2. Python 中的单下划线和双下划线

    哈喽大家好,我是咸鱼 当我们在学习 Python 的时候,可能会经常遇到单下划线 _ 和双下划线 __ 这两种命名方式 单下划线 _ 和双下划线 __ 不仅仅是只是一种简单的命名习惯,它们在 Pyth ...

  3. [计蒜客20191103D] 坐车

    n 个学生将要坐车去餐厅,每辆车最多可以坐 5 个人并且出于对环境的考虑他们不会使用多余的车.车的速度为每秒 1 个单位.现在 ii 号同学需要去 \(i\) 号点停 5 分钟(此时整车都在 i 号点 ...

  4. HBase的实验原理

    功能组件: master Region Region到底被存到哪里去了 HBase的三层结构 三层结构中各个层次的名称和作用

  5. 【大语言模型基础】60行Numpy教你实现GPT-原理与代码详解

    写在前面 本文主要是对博客 https://jaykmody.com/blog/gpt-from-scratch/ 的精简整理,并加入了自己的理解. 中文翻译:https://jiqihumanr.g ...

  6. 万界星空科技电子电器装配行业云MES解决方案

    电子电器装配属于劳动密集型.科技含量较高的行业,产品零部件种类繁多,生产组装困难,生产过程存在盲点,同时也决定了生产流水线多且对自动化水平要求较高. 万界星空科技提供的电子行业解决方案,从仓储管理.生 ...

  7. 解决 IDEA 报错ERROR:JAVA: 无效的源发行版: 11

    解决 IDEA 报错ERROR:JAVA: 无效的源发行版: 11 原因 一般都是创建工程的时候 一路next 默认选择了 Java Version 11, 而本地的jdk版本是 8 解决 File ...

  8. Lean大神编译的OpenWRT问题汇总

    1.初始密码为password,登录路由器后第一件事要修改默认密码 2.Lean大神编译的OpenWRT无法SSH.SFTP, 3.为了方便操作,一定要编译的时候安装TTYD,但是TTYD默认无法打开 ...

  9. 如何使用 Helm 在 K8s 上集成 Prometheus 和 Grafana|Part 2

    在 Part 1 中,我们一起了解了什么是 Prometheus 和 Grafana,以及使用这些工具的前提条件和优势.在本部分,将继续带您学习如何安装 Helm 以及如何使用 Prometheus ...

  10. k8s卷管理-1

    目录 卷管理-1 1. 本地存储 1.1 emptyDir 1.2 hostPath 网络存储 搭建NFS服务器 使用NFS网络存储 搭建iSCSI服务器 使用iSCSI网络存储 卷管理-1 我们之前 ...