其实很简单,把之前随机数据的解法中维护块内数据的数据结构换成约束 RMQ,这样子复杂度 严格 单点修改 \(O(\sqrt n)\),区间查询 \(O(1)\),线性空间。

唯一的问题是常数太大了,有 \(4\) 倍常数。

#include <bits/stdc++.h>
using namespace std;
const int MAXN = 2000;
const int MAXM = 20;
const int warma = 1000;
int a[1000001];
int INPUT[MAXN];
int cnt;
struct RMQ {
int mx;
int N, A[MAXN];
int blockSize;
int S[MAXN][MAXM], Pow[MAXM], Log[MAXN];
int Belong[MAXN], Pos[MAXN];
int Pre[MAXN], Sub[MAXN];
int F[MAXN];
void buildST() {
int cur = 0, id = 1;
Pos[0] = -1;
for (int i = 1; i <= N; ++i) {
S[id][0] = std::max(S[id][0], A[i]);
Belong[i] = id;
if (Belong[i - 1] != Belong[i])
Pos[i] = 0;
else
Pos[i] = Pos[i - 1] + 1;
if (++cur == blockSize) {
cur = 0;
++id;
}
}
if (N % blockSize == 0) --id;
Pow[0] = 1;
for (int i = 1; i < MAXM; ++i) Pow[i] = Pow[i - 1] * 2;
for (int i = 2; i <= id; ++i) Log[i] = Log[i / 2] + 1;
for (int i = 1; i <= Log[id]; ++i) {
for (int j = 1; j + Pow[i] - 1 <= id; ++j) {
S[j][i] = std::max(S[j][i - 1], S[j + Pow[i - 1]][i - 1]);
}
}
} void buildSubPre() {
for (int i = 1; i <= N; ++i) {
if (Belong[i] != Belong[i - 1])
Pre[i] = A[i];
else
Pre[i] = std::max(Pre[i - 1], A[i]);
}
for (int i = N; i >= 1; --i) {
if (Belong[i] != Belong[i + 1])
Sub[i] = A[i];
else
Sub[i] = std::max(Sub[i + 1], A[i]);
}
} void buildBlock() {
static int S[MAXN], top;
for (int i = 1; i <= N; ++i) {
if (Belong[i] != Belong[i - 1])
top = 0;
else
F[i] = F[i - 1];
while (top > 0 && A[S[top]] <= A[i]) F[i] &= ~(1 << Pos[S[top--]]);
S[++top] = i;
F[i] |= (1 << Pos[i]);
}
} void init() {
for(int i=1;i<=1001;i++){
A[i]=Log[i]=Belong[i]=Pos[i]=Pre[i]=Sub[i]=F[i]=0;
}
for(int i=1;i<=20;i++){
Pow[i]=0;
}
for(int i=1;i<=101;i++){
for(int j=1;j<=11;j++){
S[i][j]=0;
}
}
mx=0;
for (int i = 1; i <= N; ++i) A[i]=INPUT[i],mx=max(mx,A[i]);
blockSize = max( (int)(log2(N) * 1.5),1);
buildST();
buildSubPre();
buildBlock();
} int queryMax(int l, int r) {
int bl = Belong[l], br = Belong[r];
if (bl != br) {
int ans1 = 0;
if (br - bl > 1) {
int p = Log[br - bl - 1];
ans1 = std::max(S[bl + 1][p], S[br - Pow[p]][p]);
}
int ans2 = std::max(Sub[l], Pre[r]);
return std::max(ans1, ans2);
} else {
return A[l + __builtin_ctz(F[r] >> Pos[l])];
}
}
} R[MAXN];
void init(){
for(int i=1;i<=cnt;i++){
INPUT[i]=R[i].mx;
}
R[cnt+1].N=cnt;
R[cnt+1].init();
}
int query(int l,int r){
int bl=l/warma+1;
l%=warma;
if(l==0){
bl--;
l+=warma;
}
int br=r/warma+1;
r%=warma;
if(r==0){
br--;
r+=warma;
}
if(bl==br){
return R[bl].queryMax(l,r);
}
else if(bl+1==br){
return max(R[bl].queryMax(l,R[bl].N),R[br].queryMax(1,r));
}
else{
return max(max(R[bl].queryMax(l,R[bl].N),R[br].queryMax(1,r)),R[cnt+1].queryMax(bl+1,br-1));
}
}
void add(int pos,int val){
a[pos]+=val;
int bpos=pos/warma+1;
if(pos%warma==0){
bpos--;
}
int len=0;
for(int i=(bpos-1)*warma+1;i<=min(n,bpos*warma);i++){
len++;
INPUT[i-(bpos-1)*warma]=a[i];
}
R[bpos].N=len;
R[bpos].init();
init();
}
int n,m;
int last=1;
int main() {
ios::sync_with_stdio(0);
cin.tie(0);
cout.tie(0);
cin>>n>>m;
for(int i=1;i<=n;i++) cin>>a[i];
for(int i=1;i<=n;i++){
if(i%warma==0){
R[++cnt].N=(i-last+1);
for(int j=last;j<=i;j++){
INPUT[j-last+1]=a[j];
}
R[cnt].init();
last=i+1;
}
}
if(last<=n){
R[++cnt].N=(n-last+1);
for(int j=last;j<=n;j++){
INPUT[j-last+1]=a[j];
}
R[cnt].init();
last=n+1;
}
init();
while(m--){
int l,r;
cin>>l>>r;
cout<<query(l,r)<<'\n';
}
/*
scanf("%d%d", &R.N, &M);
R.init();
for (int i = 0, l, r; i < M; ++i) {
scanf("%d%d", &l, &r);
printf("%d\n", R.queryMax(l, r));
}
*/
return 0;
}

严格根号带修 RMQ的更多相关文章

  1. Codeforces 1476G - Minimum Difference(带修莫队+根号平衡)

    Codeforces 题目传送门 & 洛谷题目传送门 震惊!我竟然独立切掉了这道 *3100 的题! 虽然此题难度的确虚高,感觉真实评分也就 2800~2900 罢.但感觉还是挺有成就感的( ...

  2. 莫队初探(不带修/例题极少)By cellur925

    因为今天考到莫队裸题了嘤嘤嘤...而我这样的蒟蒻肯定不会这样的高端算法啊QAQ.于是暴力水了40分qwq. 正如上文所说,我实在太菜了,于是学习莫队也只是学习了最简单的不带修普通莫队,如果我能苟到省选 ...

  3. 【BZOJ-1146】网络管理Network DFS序 + 带修主席树

    1146: [CTSC2008]网络管理Network Time Limit: 50 Sec  Memory Limit: 162 MBSubmit: 3495  Solved: 1032[Submi ...

  4. 【BZOJ-3052】糖果公园 树上带修莫队算法

    3052: [wc2013]糖果公园 Time Limit: 200 Sec  Memory Limit: 512 MBSubmit: 883  Solved: 419[Submit][Status] ...

  5. 主席树套树状数组——带修区间第k大zoj2112

    主席树带修第k大 https://www.cnblogs.com/Empress/p/4659824.html 讲的非常好的博客 首先按静态第k大建立起一组权值线段树(主席树) 然后现在要将第i个值从 ...

  6. 「洛谷1903」「BZOJ2120」「国家集训队」数颜色【带修莫队,树套树】

    题目链接 [BZOJ传送门] [洛谷传送门] 题目大意 单点修改,区间查询有多少种数字. 解法1--树套树 可以直接暴力树套树,我比较懒,不想写. 稍微口胡一下,可以直接来一个树状数组套主席树,也就是 ...

  7. BZOJ2120 数颜色 莫队 带修莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ2120.html 题目传送门 - BZOJ2120 题意 给定一个长度为 $n$ 的序列 $a$ ,有 ...

  8. BZOJ3052/UOJ#58 [wc2013]糖果公园 莫队 带修莫队 树上莫队

    原文链接https://www.cnblogs.com/zhouzhendong/p/BZOJ3052.html 题目传送门 - BZOJ3052 题目传送门 - UOJ#58 题意 给定一棵树,有 ...

  9. UVA 12345 Dynamic len(带修莫队)

    Dynamic len [题目链接]Dynamic len [题目类型]带修莫队 &题解: 莫队可以单点更改,只要再多加一维,代表查询次数,排序的时候3个关键字. 之后循环离线的时候,先暴力时 ...

  10. bzoj 2120 数颜色 (带修莫队)

    题目链接: https://www.lydsy.com/JudgeOnline/problem.php?id=2120 题意:两种操作:Q 询问区间  l - r  内颜色的种类 ,R 单点修改 思路 ...

随机推荐

  1. python教程1.1:环境安装+代码编辑器安装

    1.环境安装 打开官⽹ https://www.python.org/downloads/windows/ 下载中 下载后执⾏,点击下⼀步安装就⾏,注意选择添加Python到当前⽤户环境变量 2.代码 ...

  2. jeecg-boot中分页接口用自定义sql和实体实现

    1.controller实现 @RequestMapping(value = "/list", method = RequestMethod.GET) public Result& ...

  3. postgresql 主键id配序列

    一.手动创建序列 1.表格id字段,设置主键(PRIMARY KEY),类型为int4 2.创建序列 CREATE SEQUENCE public.moni_wzhour_warn_id_seq IN ...

  4. Vue3 echarts 组件化使用 resizeObserver

    点击查看代码 const resizeObserver = ref(null); //进行初始化和监听窗口变化 onMounted(async () => { await nextTick(() ...

  5. java学习之旅(day.20)

    注解和反射 注释comment:给人看 注解annotation:不仅可以给人看,还能给程序看,甚至能被其他程序读取 注解入门 什么是注解 注解的作用: 不是程序本身,可以对程序作出解释(这一点和注释 ...

  6. ansible使用详解

    ansible执行,用户主机配置 免密同一个同一个用户执行命令 1 能免密登录的[root@mcw1 ~]$ ansible 10.0.0.132 -m shell -a "hostname ...

  7. Winform 动态画曲线 波峰波谷识别

    项目需要识别数组的波峰波谷,我就想 可视化的测试自己的判断波峰波谷的算法,于是就有了下面这张图. 我就用gdi+再panel上描点,点画完后,就点击分析按钮蓝色的为波峰 绿色的为波谷.虽然说能识别出来 ...

  8. 【C#】操作word 【Aspose.Words】

    上图是要填充的word模板,就是一个接口说明文档.那个像书名号括起来的东西就是要替换的,这个东西并不是键盘输入的书名号,它是文档部件的一种,要插入这个东西需要: 打开模板word文件,用office打 ...

  9. Win11任务栏图标重叠、混乱、异常、闪烁、乱动问题解决方法

    重启资源管理器 1.按如CTRL + Shift + ESC打开任务管理器 2.找到Windows资源管理器,右键重启资源管理器即可(通常有用) 解决方法2(来自微软官方,未尝试): 如果问题依旧,可 ...

  10. 彻底搞清楚vue3的defineExpose宏函数是如何暴露方法给父组件使用

    前言 众所周知,当子组件使用setup后,父组件就不能像vue2那样直接就可以访问子组件内的属性和方法.这个时候就需要在子组件内使用defineExpose宏函数来指定想要暴露出去的属性和方法.这篇文 ...