题目链接

题目

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n 种花,从1 到n 标号。为了在门口展出更多种花,规定第i 种花不能超过ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入描述

第一行包含两个正整数n和m,中间用一个空格隔开。

第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、……an。

输出描述

输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。

示例1

输入

2 4
3 2

输出

2

说明

有2种摆花的方案,分别是(1,1,1,2),(1,1,2,2)。括号里的1和2表示两种花,比如第一个方案是前三个位置摆第一种花,第四个位置摆第二种花。

备注

对于20%数据,有0<n≤8,0<m≤8,0≤ai≤8;

对于50%数据,有0<n≤20,0<m≤20,0≤ai≤20;

对于100%数据,有0<n≤100,0<m≤100,0≤ ai≤100。

题解

知识点:背包dp,计数dp。

可以看作一个多重背包,每种花是看作物品,花的盆数是物品数量。于是有转移方程:

\[dp[i][j] = sum[j] - sum[j-a[i]-1],sum[n] = \sum_{j=1}^{n} dp[i-1][j]
\]

表示考虑到第 \(i\) 盆花已经摆了 \(j\) 盆时的方案数是考虑到 \(i-1\) 盆摆了 \([j-a[i],j]\) 盆的方案数的总和,可以用前缀和优化,普通的多重背包就不一定可以这样优化qwq。

可以滚动数组优化空间。

题外话

一个经典模型 \(x_1 + x_2 + \cdots + x_m = n,x_i \geq 1 \and x_i \in \Z^+\) ,每个整数位置和值不同就是方案不同,问有多少种方案。

考虑把整数当成多个不加区分的 \(1\) 合在一起的结果,用不加区分的隔板分隔不同的整数。例如:111|11|1111|1|1,就分出了 \([3,2,4,1,1]\) 。

于是对于这个模型,有 \(m-1\) 个隔板,\(n\) 个 \(1\) ,一共会有 \(n+m-1\) 个位置放 \(1\) 和隔板,先放隔板有 \(C_{n+m-1}^{m-1}\) 种方案,剩下的放 \(1\) 有 \(C_n^n\) 种方案,共计 \(C_{n+m-1}^{m-1} = C_{n+m-1}^{n}\) 种方案。

注意 \(x_i \geq 1\) 是必须的,如果 $x_i \geq a_i $ 则可以通过 \(x_i - a_i+1\) 的变形使得符合条件。

但本题是 \(1 \leq x_i \leq a_i\) ,就不能用这个经典模型了。

其实经典模型是个完全背包,而本题则是多重背包。

时间复杂度 \(O(nm)\)

空间复杂度 \(O(m)\)

代码

#include <bits/stdc++.h>

using namespace std;

const int mod = 1000007;
int a[107], dp[107], sum[107];///第i种花,一共摆了j个 int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
dp[0] = 1;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) {
sum[0] = dp[0];
for (int j = 1;j <= m;j++) sum[j] = (sum[j - 1] + dp[j]) % mod;
for (int j = 0;j <= m;j++)
dp[j] = (sum[j] - (j - a[i] - 1 < 0 ? 0 : sum[j - a[i] - 1]) + mod) % mod;
}
cout << dp[m] << '\n';
return 0;
}

NC16576 [NOIP2012]摆花的更多相关文章

  1. [NOIP2012] 摆花

    1270. [NOIP2012] 摆花 http://cogs.pro/cogs/problem/problem.php?pid=1270 ★   输入文件:flower.in   输出文件:flow ...

  2. NOIP2012摆花

    题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆.通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号.为了在门口展出更多种花,规定第 i 种花不 ...

  3. [noip科普]关于LIS和一类可以用树状数组优化的DP

    预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...

  4. 【转】关于LIS和一类可以用树状数组优化的DP 预备知识

    原文链接 http://www.cnblogs.com/liu-runda/p/6193690.html 预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法 ...

  5. NOIP2012 普及组 T3 摆花——S.B.S.

    题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...

  6. [Noip2012普及组]摆花

    Description 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆.通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号.为了在门口展出更多种花,规定 ...

  7. 洛谷P1077 [NOIP2012普及组]摆花 [2017年四月计划 动态规划14]

    P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...

  8. Vijos_1792_摆花_(动态规划,多重集组合数)

    描述 https://vijos.org/p/1792 共n种花,第i种花有a[i]个,要摆m个,同一种花连续且花按照序号从小到大排,问共有多少种摆花方案.   描述 小明的花店新开张,为了吸引顾客, ...

  9. NOIP2012 普及组真题 4.13校模拟

    考试状态: 我今天抽签看了洛谷的… 这我能怂???凶中带吉,我怕考试??我!不!怕! 看着整个机房的男同学们,我明白我是不会触发我的忌了.很好,开刷. A. [NOIP2012普及组真题] 质因数分解 ...

  10. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

随机推荐

  1. JVM 性能调优 及 为什么要减少 Full GC

    本文为博主原创,未经允许不得转载: 系统上线压测,需要了解系统的瓶颈以及吞吐量,并根据压测数据进行对应的优化. 对压测进行 JVM 性能优化,有两条思路: 第一种情况 : 使用压测工具 jmeter  ...

  2. IDEA中无法调出中文输入法?

    参考链接:idea写代码时无法切换到中文输入

  3. android应用申请加入电池优化白名单

    首先,在 AndroidManifest.xml 文件中配置一下权限: 1 <uses-permission android:name="android.permission.REQU ...

  4. 持续集成指南:Gitlab CI/CD 自动部署前端项目

    前言 之前陆续写了 Gitlab 的安装使用还有 Gitlab CI/CD 的配置使用,已经把 AspNetCore 的后端项目都做了持续集成了,尝到甜头之后,现在前端的项目也要加入自动化部署,所以经 ...

  5. 使用Java分析器优化代码性能,解决OOM问题

    有的时候博客内容会有变动,首发博客是最新的,其他博客地址可能会未同步,认准https://blog.zysicyj.top 首发博客地址 背景 最近我一直在做性能优化,对一个单机应用做性能优化.主要是 ...

  6. ZHS16GBK字符集下面Oracle数据库varchar与nvarchar的验证

    ZHS16GBK字符集下面Oracle数据库varchar与nvarchar的验证 背景 周末分析了 SQLServer mysql等数据库 想着继续分析一下oracle数据库 这边oracle使用的 ...

  7. [转帖]PostgreSQL 参数优化设置 32GB内存(推荐) 内存参数 检查点 日志参数 自动初始化参数shell脚本

    1.修改参数列表 (1)执行计划 enable_nestloop = off #默认为on enable_seqscan = off #默认为on enable_indexscan = on enab ...

  8. [转帖]长篇图解 etcd 核心应用场景及编码实战

    https://xie.infoq.cn/article/3329de088beb60f5803855895 一.白话 etcd 与 zookeeper 二.etcd 的 4 个核心机制 三.Lead ...

  9. 《Javascript高级程序设计》读书笔记——继承与原型链

    继承与原型链 原型链 在原型那一节中,讲到了用于搜索对象属性的原型搜索机制:而原型链,本质上 就是对原型搜索机制的扩充: 回想下之前的内容,我们要读取一个Person的实例p属性,会先搜索实例p:如果 ...

  10. 对于Vue3和Ts的心得和思考

    作者:京东物流 吴云阔 1 前言 Vue3已经正式发布了一段时间了,各种生态已经成熟.最近使用taro+vue3重构冷链的小程序,经过了一段时间的开发和使用,有了一些自己的思考. 总的来说,Vue3无 ...