题目链接

题目

题目描述

小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m 盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n 种花,从1 到n 标号。为了在门口展出更多种花,规定第i 种花不能超过ai 盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。

试编程计算,一共有多少种不同的摆花方案。

输入描述

第一行包含两个正整数n和m,中间用一个空格隔开。

第二行有n个整数,每两个整数之间用一个空格隔开,依次表示a1、a2、……an。

输出描述

输出只有一行,一个整数,表示有多少种方案。注意:因为方案数可能很多,请输出方案数对1000007取模的结果。

示例1

输入

2 4
3 2

输出

2

说明

有2种摆花的方案,分别是(1,1,1,2),(1,1,2,2)。括号里的1和2表示两种花,比如第一个方案是前三个位置摆第一种花,第四个位置摆第二种花。

备注

对于20%数据,有0<n≤8,0<m≤8,0≤ai≤8;

对于50%数据,有0<n≤20,0<m≤20,0≤ai≤20;

对于100%数据,有0<n≤100,0<m≤100,0≤ ai≤100。

题解

知识点:背包dp,计数dp。

可以看作一个多重背包,每种花是看作物品,花的盆数是物品数量。于是有转移方程:

\[dp[i][j] = sum[j] - sum[j-a[i]-1],sum[n] = \sum_{j=1}^{n} dp[i-1][j]
\]

表示考虑到第 \(i\) 盆花已经摆了 \(j\) 盆时的方案数是考虑到 \(i-1\) 盆摆了 \([j-a[i],j]\) 盆的方案数的总和,可以用前缀和优化,普通的多重背包就不一定可以这样优化qwq。

可以滚动数组优化空间。

题外话

一个经典模型 \(x_1 + x_2 + \cdots + x_m = n,x_i \geq 1 \and x_i \in \Z^+\) ,每个整数位置和值不同就是方案不同,问有多少种方案。

考虑把整数当成多个不加区分的 \(1\) 合在一起的结果,用不加区分的隔板分隔不同的整数。例如:111|11|1111|1|1,就分出了 \([3,2,4,1,1]\) 。

于是对于这个模型,有 \(m-1\) 个隔板,\(n\) 个 \(1\) ,一共会有 \(n+m-1\) 个位置放 \(1\) 和隔板,先放隔板有 \(C_{n+m-1}^{m-1}\) 种方案,剩下的放 \(1\) 有 \(C_n^n\) 种方案,共计 \(C_{n+m-1}^{m-1} = C_{n+m-1}^{n}\) 种方案。

注意 \(x_i \geq 1\) 是必须的,如果 $x_i \geq a_i $ 则可以通过 \(x_i - a_i+1\) 的变形使得符合条件。

但本题是 \(1 \leq x_i \leq a_i\) ,就不能用这个经典模型了。

其实经典模型是个完全背包,而本题则是多重背包。

时间复杂度 \(O(nm)\)

空间复杂度 \(O(m)\)

代码

#include <bits/stdc++.h>

using namespace std;

const int mod = 1000007;
int a[107], dp[107], sum[107];///第i种花,一共摆了j个 int main() {
std::ios::sync_with_stdio(0), cin.tie(0), cout.tie(0);
int n, m;
cin >> n >> m;
dp[0] = 1;
for (int i = 1;i <= n;i++) cin >> a[i];
for (int i = 1;i <= n;i++) {
sum[0] = dp[0];
for (int j = 1;j <= m;j++) sum[j] = (sum[j - 1] + dp[j]) % mod;
for (int j = 0;j <= m;j++)
dp[j] = (sum[j] - (j - a[i] - 1 < 0 ? 0 : sum[j - a[i] - 1]) + mod) % mod;
}
cout << dp[m] << '\n';
return 0;
}

NC16576 [NOIP2012]摆花的更多相关文章

  1. [NOIP2012] 摆花

    1270. [NOIP2012] 摆花 http://cogs.pro/cogs/problem/problem.php?pid=1270 ★   输入文件:flower.in   输出文件:flow ...

  2. NOIP2012摆花

    题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆.通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号.为了在门口展出更多种花,规定第 i 种花不 ...

  3. [noip科普]关于LIS和一类可以用树状数组优化的DP

    预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法,我们可以将其不严谨地先理解为递推.例如斐波那契数列的递推求法可以不严谨地认为是DP.当然DP的状态也可以 ...

  4. 【转】关于LIS和一类可以用树状数组优化的DP 预备知识

    原文链接 http://www.cnblogs.com/liu-runda/p/6193690.html 预备知识 DP(Dynamic Programming):一种以无后效性的状态转移为基础的算法 ...

  5. NOIP2012 普及组 T3 摆花——S.B.S.

    题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时 ...

  6. [Noip2012普及组]摆花

    Description 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共 m 盆.通过调查顾客的喜好,小明列出了顾客最喜欢的 n 种花,从 1 到 n 标号.为了在门口展出更多种花,规定 ...

  7. 洛谷P1077 [NOIP2012普及组]摆花 [2017年四月计划 动态规划14]

    P1077 摆花 题目描述 小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆.通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号.为了在门口展出更多种花,规定第i种花不能 ...

  8. Vijos_1792_摆花_(动态规划,多重集组合数)

    描述 https://vijos.org/p/1792 共n种花,第i种花有a[i]个,要摆m个,同一种花连续且花按照序号从小到大排,问共有多少种摆花方案.   描述 小明的花店新开张,为了吸引顾客, ...

  9. NOIP2012 普及组真题 4.13校模拟

    考试状态: 我今天抽签看了洛谷的… 这我能怂???凶中带吉,我怕考试??我!不!怕! 看着整个机房的男同学们,我明白我是不会触发我的忌了.很好,开刷. A. [NOIP2012普及组真题] 质因数分解 ...

  10. CH Round #30 摆花[矩阵乘法]

    摆花 CH Round #30 - 清明欢乐赛 背景及描述 艺术馆门前将摆出许多花,一共有n个位置排成一排,每个位置可以摆花也可以不摆花.有些花如果摆在相邻的位置(隔着一个空的位置不算相邻),就不好看 ...

随机推荐

  1. [kubernetes]服务健康检查

    前言 进程在运行,但是不代表应用是正常的,对此pod提供的探针可用来检测容器内的应用是否正常.k8s对pod的健康状态可以通过三类探针来检查:LivenessProbe.ReadinessProbe和 ...

  2. 【TouchGFX】使用v4.18.1版本创建预制电路板工程的正确方法

    选择要使用的电路板 实现自己的程序 Designer运行仿真没问题并生成代码 我习惯使用IAR工具,发现直接编译有错误 上述错误是因为Designer默认生成的工具链是CubeIDE,所以需要使用Cu ...

  3. JS - 递归实现无限分类

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...

  4. Python Code_03数据类型

    数据类型 author : 写bug的盼盼 development time : 2021/8/27 19:59 变量定义 name = '阿哈' print(name) print('标识',id( ...

  5. [转帖]【SQL SERVER】锁机制

    https://www.cnblogs.com/WilsonPan/p/12618849.html   锁定是 SQL Server 数据库引擎用来同步多个用户同时对同一个数据块的访问的一种机制. 基 ...

  6. [转帖]jmeter SSL证书相关配置

    在实际工作中,我们大多数接口都是用的HTTPS来保证安全,使用jmeter测试HTTPS请求是如何配置证书呢? 1.最简单的方法,在选项里选择SSL管理器,然后选择相应的证书即可 在弹出的选择框选择证 ...

  7. 【转帖】ChatGPT重塑Windows!微软王炸更新:操作系统全面接入,Bing也能用插件了

    https://cloud.tencent.com/developer/article/2291078?areaSource=&traceId= 金磊 丰色 西风 发自 凹非寺 量子位 | 公 ...

  8. ESXi查看底层存储磁盘厂商型号的方式与方法

    ESXi查看底层存储磁盘厂商型号的方式与方法 背景 公司一台过保的服务器出现了磁盘告警 Vendor不太靠谱. 过保的机器就不管了 不买他们的服务器也不说一下是啥硬盘. 想自己替换,需要先获取磁盘的型 ...

  9. js正则手机号 验证

    注意一下 现在手机号第二位是不是 只有3 4 5 7 8这几个数, 如果还有请告诉我,否则这个正则表达式式错误的. <div id="app"> <el-inpu ...

  10. 【JS 逆向百例】某易支付密码 MD5+AES 加密分析

    关注微信公众号:K哥爬虫,持续分享爬虫进阶.JS/安卓逆向等技术干货! 声明 本文章中所有内容仅供学习交流,抓包内容.敏感网址.数据接口均已做脱敏处理,严禁用于商业用途和非法用途,否则由此产生的一切后 ...