Preview:

个人认为是一套非常好的题单,能在各个方面练习 DS 水平,并且很多题型也是比赛当中的经典题

题单链接

Challenge 0:

简单的数组,懒得写了。

Challenge 1:

考虑每一次修改所带来的的影响,因为修改是直接对上一个版本而不是任意一个版本进行修改,所以我们可以让每一个位置维护一个 vector,当我们修改某个位置时,就把操作序号和修改的值 push_back 进 vector 里面,然后查询第几次操作时某位置的值就变成了在 vector 上面二分。时间复杂度 \(O(M \log |opt|)\)

Challenge 2:

主席树,但是大型动态开点现场。

我们对于操作二,可以理解为在当前最新版本查询第 \(x\) 个元素。

对于操作三,我们可以理解为 copy 相对于第 \(x\) 前版本,使之成为最新版本。

至于操作一,我们可以预先分配好 \(1e5\) 长度的序列,然后加减数就是动态开点式添点,因为我们的加是直接在尾部添加,所以我们每个叶子结点只需要两个信息:当前值和元素个数,然后 \(\text{pushup}\) 元素个数就行了。

Challenge 3:

线段树板子题,懒得记录了。

Challenge 4:

有两种思路,先说第一种:

对于操作 \(2\),我们可以观察一下,发现其本质是区间和的平方减去区间平方和再除以 \(2\),所以让线段树维护区间和和区间平方和就可以了。

至于操作 \(3\) 嘛,因为只是单点修改,所以怎么乱搞都可以过。

第二种是机房 \(\text{gxd}\) 大神提出来的(膜拜大神 \(\text{gxd}\)):

对于一个区间,我们维护两个值,分别是两两相乘的值和区间和,对于区间的合并,我们则有:

\[\text{合并出来的区间 = 原先两个区间的两两相乘值 + 两个区间的区间和相乘}
\]

然后就做完了,毕竟是单点改,所以修改操作也是 \(O(M \log n)\) 的。

以上两种的时间复杂度都是 \(O(n \log n)\)

Challenge 5:

也是线段树板子题,不过 \(\text{lazytag}\) 下传的时候要考虑一下 \(\text{lazytag}\) 是否真的存在。

或许珂朵莉树也是个不错的选择?

Challenge 6:

(前言:楼房重建的翻版)

喵喵题,所有的喵喵之处全在 \(\text{pushup}\) 上了,其余的和板子一样。

对于本题,\(\text{pushup}\) 应该依照一下逻辑:

  1. 若当前区间的最大值小于 \(cmax\),则直接返回 \(0\)
  2. 若当前区间为叶子,则返回 \(cmax < seg[p].max\)
  3. 若当前区间的第一个元素大于 \(cmax\),则直接返回该区间的贡献。
  4. 若当前区间的左儿子的最大值小于等于 \(cmax\),则递归到右儿子
  5. (重点)若当前区间的左儿子最大值大于 \(cmax\),则递归到左儿子,此时右儿子的贡献则为 \(pushup(cmax,p<<1)+seg[p].data - seg[p<<1].data\)。

可能第五点不大好理解,这里详细说一下:

因为右儿子中有贡献的一定大于左儿子的最大值,所以我们无论左儿子中哪些数做出了贡献,右儿子那些有贡献的数必定已然拥有贡献,而且我们保证,若左儿子拥有贡献,则提供贡献的肯定包含左儿子的最大值,因为右儿子有贡献的必定大于左儿子的最大值,所以易证右儿子的贡献可以全部加上。

然后就是一个线段树单点修改的板子。

Challenge 7:

有两种思路,我们先说第一种:

用 \(\text{unordered\_map}\) 开个桶,然后顺便记录一下原序列,则此时更改序列某一个元素就变成了将桶中原来那个数的位置 \(-1\),修改后的数的位置 \(+1\)。

查询直接 \(\text{unordered\_map}\) 映射过来就好。

操作的时间复杂度近似于 \(O(1)\),但是不保证毒瘤出题人是否会卡你 \(\text{unordered\_map}\),所以换成 \(\text{map}\) 的话更稳妥但此时复杂度上升至了 \(O(\log n)\).

第二种思路和第一种一样,但是鉴于原题建议 \(\text{C++}\) 选手不要用 \(\text{STL}\),则我们可以用平衡树或者值域线段树来代替 STL。

时间复杂度 \(O(M \log n)\)

Challenge 8:

刚开始被唬了一跳,然后立马调整过来了。

一道非常不错的 “贪心+平衡树+堆+哈希表”

我们分析一下,当一个数插入进来的时候,在当前数列中与哪些数之间的差特别小,显然,肯定是与他的前驱或者后继相差最小。

于是维护一颗平衡树(实际上我用的是 \(\text{set}\),因为感觉自己写的容易 T 飞 ),他的作用主要是来查询当前待插入值得前驱后继。

那么对于差,我们维护一个小根堆(\(\text{priority\_queue}\)),此时显然堆顶就是我们想要的答案。

那么删除操作该怎么办呢,因为优先队列无法做到精准定位删除,所以我们可以让关于优先队列的删除操作在查询时完成,为了标记我们需要删除的值,我们还应当维护一张哈希表(\(\text{unordered\_map}\)),用来记录有哪些差值需要被删除多少次。

注意:

  1. 当我们删除一个值的时候,应当将他的前驱和后继的差再 \(\text{push}\) 进去,否则会少信息。
  2. 当我们插入一个值得时候,应当先找前驱后继再插入,否则会增加代码量或者有一定概率 G 掉

时间复杂度应该是个摊还分析,不会,盲猜 \(O(n \log n)\)

关于删除操作还有另外两种思路(全部来自于 \(\text{do\_while\_true}\),在这里万分感谢他):

  1. 使用 \(\text{multi\_set}\),作用和优先队列差不多(抛开对比优先队列的常数),但是支持迭代器 \(\text{erase}\),删除的时候直接 \(\text{lower\_bound} + \text{erase}\),查询最小只需要 \(\text{begin}\) 就行了。时间复杂度依旧是 \(O(M \log n)\)
  2. 可删堆的思路,似乎常数更小?均摊下来依旧是 \(O(M\log n)\)

Challenge 9:

一道非常经典的 trick 好题

我们将每个线段树节点维护两个信息,分别是当前位置的数字和当前区间的有效元素个数,此时删除操作就变成了减少某个位置的有效元素个数,查询操作就变成了用当前的有效元素个数信息来凑出第 \(k\) 个数。

Challenge 10:

值域线段树或平衡树,原理同 Challenge 9。

注意查询右子树的时候应该是 \(k - \text{左子树的cnt}\)

Challenge 11:

主席树板子(雾),没啥技术含量(大雾),只要对线段树足够了解可以直接现魔改。

Challenge 12:

主席树板子二……

拓展:如果带单点修改怎么办

即答:主席树套树状数组

CDQZ DS 题单总结(上)的更多相关文章

  1. 【DP_树形DP专题】题单总结

    转载自 http://blog.csdn.net/woshi250hua/article/details/7644959#t2 题单:http://vjudge.net/contest/123963# ...

  2. 字符串数据结构模板/题单(后缀数组,后缀自动机,LCP,后缀平衡树,回文自动机)

    模板 后缀数组 #include<bits/stdc++.h> #define R register int using namespace std; const int N=1e6+9; ...

  3. LCT总结——应用篇(附题单)(LCT)

    为了优化体验(其实是强迫症),蒟蒻把总结拆成了两篇,方便不同学习阶段的Dalao们切换. LCT总结--概念篇戳这里 题单 灰常感谢XZY巨佬提供的强力资磁!(可参考XZY巨佬的博客总结) 题单对于系 ...

  4. AC自动机题单

    AC自动机题目 真的超级感谢xzy 真的帮到我很多 题单 [X] [luogu3808][模板]AC自动机(简单版) https://www.luogu.org/problemnew/show/P38 ...

  5. LCT题单(自己的做题情况反馈)(转自Flash)

    LCT题单(自己的做题情况反馈)(转自Flash) 随时进Flash Hu的LCT看一发 也可以看一下我自己的风格的板子 开始 维护链信息(LCT上的平衡树操作) [X] 洛谷P3690 [模板]Li ...

  6. tp5 ajax单文件上传

    HTML代码: <!DOCTYPE html> <html lang="en"> <head> <meta charset="U ...

  7. ASP.NET MVC5+EF6+EasyUI 后台管理系统(56)-插件---单文件上传与easyui使用fancybox

    系列目录 https://yunpan.cn/cZVeSJ33XSHKZ  访问密码 0fc2 今天整合lightbox插件Fancybox1.3.4,发现1.3.4版本太老了.而目前easyui 1 ...

  8. asp.net.mvc 的单文件上传和多文件上传的简单例子

    首先打开vs2012,创建空的mvc4项目,名称为MVCStudy,选择基本模板

  9. php文件上传之单文件上传

    为了简单一些,php文件跟form表单写在了一个文件里. php单文件上传----> <!DOCTYPE html> <html> <head> <me ...

  10. Struts2实现单文件上传

    首先配置一下web.xml <?xml version="1.0" encoding="UTF-8"?> <web-app xmlns:xsi ...

随机推荐

  1. Robot Framework 自动化测试随笔(二)

    二.Web自动化(1) 1.安装selenium2library库 pip install robotframework-selenium2library   2.指定报告的生成路径 在[Run]标签 ...

  2. openpyxl 统一表格样式

    # 统一表格样式 rows = ws.max_row columns = ws.max_column # print(rows) # print(columns) for row in range(1 ...

  3. 王道oj/problem15(用c++的引用精简代码)

    网址:http://oj.lgwenda.com/problem/15 思路:子函数的形参是指针的时候格式为 int*&p,且原函数实参为p 主函数使用fgets(字符串的指针,最大容量,st ...

  4. 线上问题排查--进程重启失败,最后发现是忘了cd

    背景 我前面写了几篇文章,讲c3p0数据库连接池发生了连接泄露,但是随机出现,难以确定根因,最终呢,为了快速解决问题,我是先写了个shell脚本,脚本主要是检测服务的接口访问日志,看看过去的30s内是 ...

  5. 使用 RediSearch 在 Redis 中进行全文检索

    原文链接: 使用 RediSearch 在 Redis 中进行全文检索 Redis 大家肯定都不陌生了,作为一种快速.高性能的键值存储数据库,广泛应用于缓存.队列.会话存储等方面. 然而,Redis ...

  6. asp.net core之EfCore

    EF Core(Entity Framework Core)是一个轻量级.跨平台的对象关系映射(ORM)框架,用于在.NET应用程序中访问和操作数据库.它是Entity Framework的下一代版本 ...

  7. 使用kubeadm部署kubernetes

    k8s版本:1.15.0 前期准备 节点: master:172.50.13.103(2核2G) node-1:172.50.13.104(2核2G) node-2:172.50.13.105(2核2 ...

  8. 如何在工作中利用Prompt高效使用ChatGPT?

    导读 AI 不是来替代你的,是来帮助你更好工作.用better prompt使用chatgpt,替换搜索引擎,让你了解如何在工作中利用Prompt高效使用ChatGPT. 01背景 现在 GPT 已经 ...

  9. Docker 安装Redis 无法使用配置文件设置密码问题

    背景 最近开发需要使用各种组件,如果都到开发机上安装,会占用电脑资源较多.所以使用docker容器来安装这些组件.例如 redis .mongodb.mysql.rabitmq.elasticsear ...

  10. 《Kali渗透基础》06. 主动信息收集(三)

    @ 目录 1:服务识别 1.1:NetCat 1.2:Socket 1.3:dmitry 1.4:nmap 2:操作系统识别 2.1:Scapy 2.2:nmap 2.3:p0f 3:SNMP 扫描 ...