RWKV – transformer 与 RNN 的强强联合
在 NLP (Natural Language Processing, 自然语言处理) 领域,ChatGPT 和其他的聊天机器人应用引起了极大的关注。每个社区为构建自己的应用,也都在持续地寻求强大、可靠的开源模型。自 Vaswani 等人于 2017 年首次提出 Attention Is All You Need 之后,基于 transformer 的强大的模型一直在不断地涌现,它们在 NLP 相关任务上的表现远远超过基于 RNN (Recurrent Neural Networks, 递归神经网络) 的 SoTA 模型,甚至多数认为 RNN 已死。而本文将介绍一个集 RNN 和 transformer 两者的优势于一身的全新网络架构 –RWKV!现已在 HuggingFace transformers 库中支持。
RWKV 项目概览
RWKV 项目已经启动,由 Bo Peng 主导、贡献和维护。同时项目成员在官方 Discord 也开设了不同主题的讨论频道: 如性能 (RWKV.cpp、量化等),扩展性 (数据集收集和处理),相关研究 (chat 微调、多模态微调等)。该项目中训练 RWKV 模型所需的 GPU 资源由 Stability AI 提供。
读者可以加入 官方 discord 频道 了解详情或者参与讨论。如想了解 RWKV 背后的思想,可以参考这两篇博文:
- https://johanwind.github.io/2023/03/23/rwkv_overview.html
- https://johanwind.github.io/2023/03/23/rwkv_details.html
Transformer 与 RNN 架构对比
RNN 架构是最早广泛用于处理序列数据的神经网络架构之一。与接收固定输入尺寸的经典架构不同,RNN 接收当前时刻的 “token”(即数据流中的当前数据点) 和先前时刻的 “状态” 作为输入,通过网络预测输出下一时刻的 “token” 和 “状态”,同时输出的 “状态” 还能继续用到后续的预测中去,一直到序列末尾。RNN 还可以用于不同的 “模式”,适用于多种不同的场景。参考 Andrej Karpathy 的博客,RNN 可以用于: 一对一 (图像分类),一对多 (图像描述),多对一 (序列分类),多对多 (序列生成),等等。

由于 RNN 在计算每一时刻的预测值时使用的都是同一组网络权重,因此 RNN 很难解决长距离序列信息的记忆问题,这一定程度上也是训练过程中梯度消失导致的。为解决这个问题,相继有新的网络架构被提出,如 LSTM 或者 GRU,其中 transformer 是已被证实最有效的架构。
在 transformer 架构中,不同时刻的输入 token 可以在 self-attention 模块中并行处理。首先 token 经过 Q、K、V 权重矩阵做线性变换投影到不同的空间,得到的 Q、K 矩阵用于计算注意力分数 (通过 softmax,如下图所示),然后乘以 V 的隐状态得到最终的隐状态,这种架构设计可以有效缓解长距离序列问题,同时具有比 RNN 更快的训练和推理速度。


在训练过程中,Transformer 架构相比于传统的 RNN 和 CNN 有多个优势,最突出的优势是它能够学到上下文特征表达。不同于每次仅处理输入序列中一个 token 的 RNN 和 CNN,transformer 可以单次处理整个输入序列,这种特性也使得 transformer 可以很好地应对长距离序列 token 依赖问题,因此 transformer 在语言翻译和问答等多种任务中表现非常亮眼。
在推理过程中,RNN 架构在推理速度和内存效率方面会具有一些优势。例如计算简单 (只需矩阵 - 向量运算) 、内存友好 (内存不会随着推理阶段的进行而增加),速度稳定 (与上下文窗口长度一致,因为 RNN 只关注当前时刻的 token 和状态)。
RWKV 架构
RWKV 的灵感来自于 Apple 公司的 Attention Free Transformer。RWKV 该架构经过精心简化和优化,可以转换为 RNN。除此此外,为使 RWKV 性能媲美 GPT,还额外使用了许多技巧,例如 TokenShift 和 SmallInitEmb (使用的完整技巧列表在 官方 GitHub 仓库的 README 中 说明)。对于 RWKV 的训练,现有的项目仓库可以将参数量扩展到 14B,并且迭代修了 RWKV-4 的一些训练问题,例如数值不稳定性等。
RWKV 是 RNN 和 Transformer 的强强联合
如何把 transformer 和 RNN 优势结合起来?基于 transformer 的模型的主要缺点是,在接收超出上下文长度预设值的输入时,推理结果可能会出现潜在的风险,因为注意力分数是针对训练时的预设值来同时计算整个序列的。
RNN 本身支持非常长的上下文长度。即使在训练时接收的上下文长度有限,RNN 也可以通过精心的编码,来得到数百万长度的推理结果。目前,RWKV 模型使用上下文长度上为 8192 ( ctx8192) 和 ctx1024 时的训练速度和内存需求均相同。
传统 RNN 模型的主要缺陷,以及 RWKV 是如何避免的:
- 传统的 RNN 模型无法利用很长距离的上下文信息 (LSTM 用作语言模型时也只能有效处理约 100 个 token),而 RWKV 可以处理数千个甚至更多的 token,如下图所示:

- 传统的 RNN 模型无法并行训练,而 RWKV 更像一个 “线性 GPT”,因此比 GPT 训练得更快。
通过将这两个优势强强联合,希望 RWKV 可以实现 “1 + 1 > 2” 的效果。
RWKV 注意力公式
RWKV 模型架构与经典的 transformer 模型架构非常相似 (例如也包含 embedding 层、Layer Normalization、用于预测下一 token 的因果语言模型头、以及多个完全相同的网络层等),唯一的区别在于注意力层,它与传统的 transformer 模型架构完全不同,因此 RWKV 的注意力计算公式也不一样。
本文不会对注意力层过多的介绍,这里推荐一篇 Johan Sokrates Wind 的博文,里面有对注意力层的分数计算公式等更全面的解释。
现有检查点
纯语言模型: RWKV-4 模型
大多数采用 RWKV 架构的语言模型参数量范围从 170M 到 14B 不等。 据 RWKV 概述博文 介绍,这些模型已经在 Pile 数据集上完成训练,并进行了多项不同的基准测试,取得了与其他 SoTA 模型表现相当的性能结果。

指令微调/Chat 版: RWKV-4 Raven
Bo 还训练了 RWKV 架构的 “chat” 版本: RWKV-4 Raven 模型。RWKV-4 Raven 是一个在 Pile 数据集上预训练的模型,并在 ALPACA、CodeAlpaca、Guanaco、GPT4All、ShareGPT 等上进行了微调。RWKV-4 Raven 模型有多个版本,如不同语言 (仅英文、英文 + 中文 + 日文、英文 + 日文等) 和不同大小 (1.5B 参数、7B 参数、14B 参数) 等。
所有 HF 版的模型都可以在 Hugging Face Hub 的 RWKV 社区主页 找到。
集成 Transformers 库
感谢这个 Pull Request 的贡献,RWKV 架构现已集成到 transformers 库中。在作者撰写本文之时,您已经可以通过从源代码安装 transformers 库,或者使用其 main 分支。RWKV 架构也会与 transformers 库一起更新,您可以像使用任何其他架构一样使用它。
下面让我们来看一些使用示例。
文本生成示例
要在给定 prompt 的情况下生成文本,您可以使用 pipeline:
from transformers import pipeline
model_id = "RWKV/rwkv-4-169m-pile"
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
pipe = pipeline("text-generation", model=model_id)
print(pipe(prompt, max_new_tokens=20))
>>> [{'generated_text': '\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.\n\nThe researchers found that the dragons were able to communicate with each other, and that they were'}]
或者可以运行下面的代码片段:
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer
model = AutoModelForCausalLM.from_pretrained("RWKV/rwkv-4-169m-pile")
tokenizer = AutoTokenizer.from_pretrained("RWKV/rwkv-4-169m-pile")
prompt = "\nIn a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese."
inputs = tokenizer(prompt, return_tensors="pt")
output = model.generate(inputs["input_ids"], max_new_tokens=20)
print(tokenizer.decode(output[0].tolist()))
>>> In a shocking finding, scientist discovered a herd of dragons living in a remote, previously unexplored valley, in Tibet. Even more surprising to the researchers was the fact that the dragons spoke perfect Chinese.\n\nThe researchers found that the dragons were able to communicate with each other, and that they were
使用 Raven 模型 (chat 模型) 示例
您可以以 alpaca 风格使用提示 chat 版模型,示例如下:
from transformers import AutoTokenizer, AutoModelForCausalLM
model_id = "RWKV/rwkv-raven-1b5"
model = AutoModelForCausalLM.from_pretrained(model_id).to(0)
tokenizer = AutoTokenizer.from_pretrained(model_id)
question = "Tell me about ravens"
prompt = f"### Instruction: {question}\n### Response:"
inputs = tokenizer(prompt, return_tensors="pt").to(0)
output = model.generate(inputs["input_ids"], max_new_tokens=100)
print(tokenizer.decode(output[0].tolist(), skip_special_tokens=True))
>>> ### Instruction: Tell me about ravens
### Response: RAVENS are a type of bird that is native to the Middle East and North Africa. They are known for their intelligence, adaptability, and their ability to live in a variety of environments. RAVENS are known for their intelligence, adaptability, and their ability to live in a variety of environments. They are known for their intelligence, adaptability, and their ability to live in a variety of environments.
据 Bo 所述,这条 discord 消息 (访问超链接时请确保已加入 discord 频道) 中有更详细的书写指令技巧。

权重转换
任何用户都可以使用 transformers 库中提供的转换脚本轻松地将原始 RWKV 模型权重转换为 HF 格式。具体步骤为: 首先,将 “原始” 权重 push 到 Hugging Face Hub (假定目标仓库为 RAW_HUB_REPO,目标权重文件为 RAW_FILE),然后运行以下转换脚本:
python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR
如果您想将转换后的模型 push 到 Hub 上 (假定推送目录为 dummy_user/converted-rwkv),首先请确保在 push 模型之前使用 huggingface-cli login 登录 HF 账号,然后运行:
python convert_rwkv_checkpoint_to_hf.py --repo_id RAW_HUB_REPO --checkpoint_file RAW_FILE --output_dir OUTPUT_DIR --push_to_hub --model_name dummy_user/converted-rwkv
未来工作
多语言 RWKV
Bo 目前正在研究在多语言语料库上训练 RWKV 模型,最近发布了一个新的 多语言分词器。
社区后续研究方向
RWKV 社区非常活跃,致力于几个后续研究方向。项目清单可以在 RWKV 的 discord 专用频道中找到 (访问超链接时请确保已加入 discord 频道)。欢迎加入这个 RWKV 研究频道,以及对 RWKV 的积极贡献!
模型压缩与加速
由于只需要矩阵 - 向量运算,对于非标准化和实验性的计算硬件,RWKV 是一个非常理想的架构选择,例如光子处理器/加速器。
因此自然地,RWKV 架构也可以使用经典的加速和压缩技术 (如 ONNX、4 位/8 位量化等)。我们希望集成了 transformer 的 RWKV 架构能够使更多开发者和从业者受益。
在不久的将来,RWKV 还可以使用 optimum 库提出的加速技术。rwkv.cpp 或 rwkv-cpp-cuda 仓库涉及的其中一些技术在库中已标明。
致谢
我们 Hugging Face 团队非常感谢 Bo 和 RWKV 社区抽出宝贵时间来回答关于架构的问题,以及非常感谢他们的帮助和支持。我们很期待在 HF 生态中看到更多 RWKV 模型的应用。我们还要感谢 Johan Wind 发布的关于 RWKV 的博文,这对我们理解架构本身和其潜力有很大帮助。最后,我们着重感谢 ArEnSc 开启 RWKV 集成到 transformers 库的 PR 所做的工作,以及感谢 Merve Noyan、Maria Khalusova 和 Pedro Cuenca 审阅和校对本篇文章!
引用
如果您希望在工作中使用 RWKV,请使用此 cff 引用。
英文原文: https://hf.co/blog/rwkv
作者: BlinkDL, Harrison Vanderbyl, Sylvain Gugger, Younes Belkada
译者: SuSung-boy
审校/排版: zhongdongy (阿东)
RWKV – transformer 与 RNN 的强强联合的更多相关文章
- 三大特征提取器(RNN/CNN/Transformer)
目录 三大特征提取器 - RNN.CNN和Transformer 简介 循环神经网络RNN 传统RNN 长短期记忆网络(LSTM) 卷积神经网络CNN NLP界CNN模型的进化史 Transforme ...
- 深入理解BERT Transformer ,不仅仅是注意力机制
来源商业新知网,原标题:深入理解BERT Transformer ,不仅仅是注意力机制 BERT是google最近提出的一个自然语言处理模型,它在许多任务 检测上表现非常好. 如:问答.自然语言推断和 ...
- zz全面拥抱Transformer
放弃幻想,全面拥抱Transformer:自然语言处理三大特征抽取器(CNN/RNN/TF)比较 在辞旧迎新的时刻,大家都在忙着回顾过去一年的成绩(或者在灶台前含泪数锅),并对2019做着规划,当然也 ...
- Transformer 和 Transformer-XL——从基础框架理解BERT与XLNet
目录写在前面1. Transformer1.1 从哪里来?1.2 有什么不同?1.2.1 Scaled Dot-Product Attention1.2.2 Multi-Head Attention1 ...
- espnet中的transformer和LSTM语言模型对比实验
摘要:本文以aishell为例,通过对比实验为大家介绍transformer和LSTM语言模型. 本文分享自华为云社区<espnet中的transformer和LSTM语言模型对比---以ais ...
- Generative Pre-trained Transformer(GPT)模型技术初探
一.Transformer模型 2017年,Google在论文 Attention is All you need 中提出了 Transformer 模型,其使用 Self-Attention 结构取 ...
- XLNet预训练模型,看这篇就够了!(代码实现)
1. 什么是XLNet XLNet 是一个类似 BERT 的模型,而不是完全不同的模型.总之,XLNet是一种通用的自回归预训练方法.它是CMU和Google Brain团队在2019年6月份发布的模 ...
- NLP基础
1 自然语言处理三大特征抽取器(CNN/RNN/TF)比较 白衣骑士Transformer:盖世英雄站上舞台 华山论剑:三大特征抽取器比较 综合排名情况 以上介绍内容是从几个不同角度来对RNN/CN ...
- 理解BERT:一个突破性NLP框架的综合指南
概述 Google的BERT改变了自然语言处理(NLP)的格局 了解BERT是什么,它如何工作以及产生的影响等 我们还将在Python中实现BERT,为你提供动手学习的经验 BERT简介 想象一下-- ...
- seq2seq模型详解及对比(CNN,RNN,Transformer)
一,概述 在自然语言生成的任务中,大部分是基于seq2seq模型实现的(除此之外,还有语言模型,GAN等也能做文本生成),例如生成式对话,机器翻译,文本摘要等等,seq2seq模型是由encoder, ...
随机推荐
- LeetcodePractice-数组
目录 88. 合并两个有序数组 思路解析 字节&1. 两数之和 思路解析 腾讯&15. 三数之和 思路解析 18. 四数之和 思路解析 解释下,tmpSum为什么用int不行,需要用i ...
- Solon2 接口开发: 强化 Gateway 模式
一般可以从这几方面对 Gateway 模式进行强化: 定制异常状态码 定制基类 将一些处理独立封装成类 接口只返回数据部份,异常状态用抛 强化之后,具体的网关即简单,又功能强大.同时会对团队开发形成一 ...
- 大数据面试——HDFS
一.Hadoop1.0 与 Hadoop2.0的区别
- MySQL高性能索引策略和查询性能优化
前缀索引和索引选择性 有时候需要索引很长的字符,这会让索引变得大且慢.一个策略是模拟哈希索引. 通常可以索引开始的部分字符,这样可以大大解约索引空间,提高索引效率.但这样会降低索引的选择性. 索引的选 ...
- Mybatis Plus根据某字段特定值排序
需求 背景:一个审核流程.审核人等级分为市级和省级,管理员升级字段adminlevel,字段含义:1省级,2市级.审核字段audit为int字段,字段含义:1待市级审核,2待省级审核,3通过审核. 需 ...
- STM32 HAL库学习 (2) USART实验
使用STM32F407 串口:PA9.PA10(利用CH340G驱动) 一. stm32f4xx_hal_uart.c 函数说明 HAL_UART_Init 函数 要使用一个外设首先要对它进行初始化, ...
- mybatis初级教程
resultType与resultMap resultType:设置默认的映射关系 resultMap:设置自定义的映射关系 查询功能必须设置这两个其中的一个 在resources下面创建包,那么就得 ...
- [ElasticSearch] ES集群状态由非正常状态(red)恢复为正常状态(green)的思路与实践
1 场景描述 1.1 资源与原规划 三台主机组成ES集群的规划: 集群名: xxx_elastic 172.15.3.7 es1 master 172.15.3.8 es2 (非master) 172 ...
- Dapr和Rainbond集成,实现云原生BaaS和模块化微服务开发
背景 Dapr 是一个开源的分布式应用运行时,帮助开发者构建松耦合的分布式应用程序,具有良好的可扩展性和可维护性.Rainbond 是一款企业级的云原生应用管理平台,提供了丰富的功能和工具,方便开发者 ...
- React课堂笔记2
一.JSX 1.1.什么是JSX JSX = JavaScript XML,这是React官方发明的一种JS语法(糖) 概念:JSX是 JavaScript XML(HTML)的缩写,表示在 JS 代 ...