百分比堆叠式柱状图是一种特殊的柱状图,它的每根柱子是等长的,总额为100%。
柱子内部被分割为多个部分,高度由该部分占总体的百分比决定。

百分比堆叠式柱状图不显示数据的“绝对数值”,而是显示“相对比例”。
但同时,它也仍然具有柱状图的固有功能,即“比较”——我们可以通过比较多个柱子的构成,分析数值之间的相对差异,或者得出数值变化的趋势。

1. 主要元素

百分比柱状图是一种用于可视化比较不同类别或组的百分比或比例的图表。

它的主要元素包括:

  1. 横轴:表示数据的主分类。
  2. 纵轴:每个子分类的比例关系。
  3. 堆叠的矩形:每个柱状图由多个堆叠部分组成,和堆叠柱状图不同的是,每个柱子都是一样高的。
  4. 图例:每个堆叠部分代表的意义。

2. 适用的场景

百分比柱状图适用的场景很多,比如:

  • 市场份额:比较不同产品或服务的市场份额,帮助决策者了解市场竞争情况。
  • 人口比例:显示不同地区或不同群体的人口比例,或不同年龄段的人口比例。
  • 问卷调查结果:比较不同选项或答案的频率或比例,或者用户对产品特性的满意度。
  • 部门预算分配:显示不同部门或项目的预算分配比例,帮助管理者了解资源分配情况。
  • 等等。。。

3. 不适用的场景

百分比柱状图也有不适用于的场景,比如:

  • 比较绝对数值:如果需要比较具体的数值大小而不仅仅是比例,那么百分比柱状图可能不是最合适的选择。
  • 数据存在重叠:如果不同类别的数据存在重叠或者相互依赖的情况,百分比柱状图可能无法清晰地展示比例关系。
  • 数据量过大或过小:如果数据量过大或过小,百分比柱状图可能无法有效地显示比例关系。

4. 分析实战

和上一篇堆叠柱状图使用相同的原始数据,绘制图形之后可以看看这两种柱状图展示分析结果的区别。

4.1. 数据来源

数据来自国家统计局公开的人民生活数据,可从下面的网址下载:
https://databook.top/nation/A0A

使用的是其中 A0A0A.csv文件(全国居民主要食品消费量)

fp = "d:/share/A0A0A.csv"

df = pd.read_csv(fp)
df

4.2. 数据清理

选取和上一篇堆叠柱状图一样,还是5类:

  1. 居民人均蔬菜及食用菌消费量(千克)
  2. 居民人均肉类消费量(千克)
  3. 居民人均禽类消费量(千克)
  4. 居民人均水产品消费量(千克)
  5. 居民人均蛋类消费量(千克)

和堆叠柱状图不同的是,绘制百分比柱状图用的是百分比数值,
所有要把原始数据中每年的绝对数值转换为百分比数值。

data = df[(df["sj"] >= 2013) &
(df["sj"] <= 2021) &
(df["zb"].isin(["A0A0A03",
"A0A0A04",
"A0A0A05",
"A0A0A06",
"A0A0A07"]))].copy() data["年消耗总量"] = data.groupby("sj").value.transform("sum")
data["各类消耗量占比"] = data["value"] / data["年消耗总量"] data.loc[:, ["sjCN", "zbCN", "各类消耗量占比"]].head(10)

4.3. 分析结果可视化

import matplotlib.ticker as mticker

data = data.sort_values("sj")
data["各类消耗量占比"] = data["各类消耗量占比"]*100 with plt.style.context("seaborn-v0_8"):
fig = plt.figure()
ax = fig.add_axes([0.1, 0.1, 0.8, 0.8]) years = data["sjCN"].drop_duplicates(keep="first").tolist()
bar_data = {
"蔬菜及菌类(%)": data[data["zb"] == "A0A0A03"]["各类消耗量占比"].tolist(),
"肉类(%)": data[data["zb"] == "A0A0A04"]["各类消耗量占比"].tolist(),
"禽类(%)": data[data["zb"] == "A0A0A05"]["各类消耗量占比"].tolist(),
"水产品(%)": data[data["zb"] == "A0A0A06"]["各类消耗量占比"].tolist(),
"蛋类(%)": data[data["zb"] == "A0A0A07"]["各类消耗量占比"].tolist(),
} bottom = np.zeros(len(years))
for key, vals in bar_data.items():
ax.bar(years, vals, label=key, bottom=bottom)
bottom += vals # 设置Y轴刻度的显示格式
ax.set_ylim(0, 110)
yticks = ax.get_yticks().tolist()
ax.yaxis.set_major_locator(mticker.FixedLocator(yticks))
ax.set_yticklabels(["{}%".format(x) for x in yticks]) ax.set_title("全国居民主要粮食消耗情况")
ax.legend(loc="upper left", ncol=5)

百分比柱状图每年的数据高度都一样,与堆叠柱状图相比,更容易比较每个种类粮食的消耗情况。
不过,这种图看不出粮食总量的变化情况了。

【matplotlib 实战】--百分比柱状图的更多相关文章

  1. matplotlib实现三维柱状图

    matplotlib实现三维柱状图 import cv2 img = cv2.imread("1.png", 0) #特征点在图片中的坐标位置 m = 448 n = 392 im ...

  2. 机器学习-Matplotlib绘图(柱状图,曲线图,点图)

    matplotlib 作为机器学习三大剑客之一   ,比热按时无比强大的 matplotlib是绘图库,所以呢我就分享一下简单的绘图方式 #柱状图 #导报 柱状图 import matplotlib. ...

  3. 使用matplotlib 制图(柱状图、箱型图)

    柱状图: import pandas as pd import matplotlib.pyplot as plt data = pd.read_csv('D:\\myfiles\\study\\pyt ...

  4. (转)matplotlib实战

    原文:https://www.cnblogs.com/ws0751/p/8361330.html https://www.cnblogs.com/ws0751/p/8313017.html---mat ...

  5. matplotlib实战

    plt.imshow(face_image.mean(axis=2),cmap='gray') 图片灰度处理¶   size = (m,n,3) 图片的一般形式就是这样的 rgb 0-255 jpg图 ...

  6. python学习之matplotlib实战2

    import numpy as np import matplotlib.pyplot as plt def main(): #scatter fig = plt.figure() ax = fig. ...

  7. python学习之matplotlib实战

    import numpy as np def main(): # print("hello") # line import matplotlib.pyplot as plt x = ...

  8. matplotlib 中的柱状图

    def drawBar(): pyplot.bar(range(5),[100,200,300,400,400]) pyplot.xticks(range(5),['A','B','C','D','E ...

  9. matplotlib 柱状图 Bar Chart 样例及参数

    def bar_chart_generator():     l = [1,2,3,4,5]     h = [20, 14, 38, 27, 9]     w = [0.1, 0.2, 0.3, 0 ...

  10. Python调用matplotlib实现交互式数据可视化图表案例

    交互式的数据可视化图表是 New IT 新技术的一个应用方向,在过去,用户要在网页上查看数据,基本的实现方式就是在页面上显示一个表格出来,的而且确,用表格的方式来展示数据,显示的数据量会比较大,但是, ...

随机推荐

  1. Java使用joml计算机图形学库,将3D坐标旋转正交投影转为2D坐标

    最近遇到了一个困扰我许久的难题,现将解决方案分享出来 由于我们的项目侧重点在前端绘图,导致了前后端工作量不协调,我后端接口很快就能写完,而前端一个图要画好久,领导见状将前端的任务分到后端一部分用Jav ...

  2. Go 语言 context 都能做什么?

    原文链接: Go 语言 context 都能做什么? 很多 Go 项目的源码,在读的过程中会发现一个很常见的参数 ctx,而且基本都是作为函数的第一个参数. 为什么要这么写呢?这个参数到底有什么用呢? ...

  3. ubuntu发行版内核源码下载

    Ubuntu 发行版linux内核在哪里? 内核安装包:http://archive.ubuntu.com/ubuntu/pool/main/l/linux/ 内核源码:https://git.lau ...

  4. Unity自定义类使用携程--自身不继承MonoBehaviour

    [TOC] 参考: https://www.jianshu.com/p/67f498cb839b 话不多说,直接上代码 1 using System.Collections; 2 using Unit ...

  5. 关于 async 和 await 两个关键字(C#)【并发编程系列】

    〇.前言 对于 async 和 await 两个关键字,对于一线开发人员再熟悉不过了,到处都是它们的身影. 从 C# 5.0 时代引入 async 和 await 关键字,我们使用 async 修饰符 ...

  6. 图解 Vue 响应式原理

    Vue 初始化 模板渲染 组件渲染 为了便于理解,本文将从以下两个方面进行探索: 从 Vue 初始化,到首次渲染生成 DOM 的流程. 从 Vue 数据修改,到页面更新 DOM 的流程. Vue 初始 ...

  7. Jenkins-Pipline实现原理

    Jenkins-Pipline原理 本文仅探讨jenkins pipline 的原理,是流水线的一个demo版本实现,不能代表Jenkins pipline的具体实现,仅供参考. 1. Jenkins ...

  8. js: 获取Blob的值

    this.ws.onmessage = async (msg) => { console.log('从服务端获取到了数据') // 从真正服务端发送过来的原始数据时在msg中的data字段 co ...

  9. failed (2: No such file or directory) in /var/www/QQ_Music/nginx.conf:18

    错误原因 解决方案 引入文件 /www/server/nginx/conf/mime.types;

  10. 01-jQuery的基本结构

    <!DOCTYPE html> <html lang="en"> <head> <meta charset="UTF-8&quo ...