Description

John得到了n罐糖果。不同的糖果罐,糖果的种类不同(即同一个糖果罐里的糖果种类是相同的,不同的糖果罐里的糖果的种类是不同的)。第i个糖果罐里有 mi个糖果。John决定吃掉一些糖果,他想吃掉至少a个糖果,但不超过b个。问题是John 无法确定吃多少个糖果和每种糖果各吃几个。有多少种方法可以做这件事呢?

Input

从标准输入读入每罐糖果的数量,整数a到b
 
John能够选择的吃掉糖果的方法数(满足以上条件)

Output

把结果输出到标准输出(把答案模 2004 输出)

1<=N<=10,0<=a<=b<=10^7,0<=Mi<=10^6

Sample Input

2 1 3
3
5

Sample Output

9

HINT

(1,0),(2,0),(3,0),(0,1),(0,2),(0,3),(1,1),(1,2),(2,1)

解法:

typedef long long LL;
const int mod = 2004;
int n, a, b, ans, m, v[20];
int C(int n,int m)
{
if (n<m) return 0;
LL t=1; LL p1=1;
for (int i=1;i<=m;i++) p1=p1*i;
LL mod2=(LL)mod*p1;
for (int i=n-m+1;i<=n;i++) t=(LL)t*i%mod2;
return (t/p1)%mod;
}
void dfs(int x, int cnt, int sum){
if(x==n+1){
if(cnt&1) ans-=C(n+m-sum,n);
else ans+=C(n+m-sum,n);
ans %= mod;
return;
}
dfs(x+1,cnt,sum);
dfs(x+1,cnt+1,sum+v[x]);
}
int f(int x){
ans=0;
m=x;
dfs(1,0,0);
return ans;
}
int main()
{
scanf("%d%d%d",&n,&a,&b);
for(int i=1; i<=n; i++) scanf("%d", &v[i]), v[i]++;
int ans = f(b)-f(a-1);
printf("%d\n", (ans%mod+mod)%mod);
return 0;
}

此题

BZOJ 3027 Sweets 生成函数,容斥的更多相关文章

  1. BZOJ.2655.calc(DP/容斥 拉格朗日插值)

    BZOJ 洛谷 待补.刚刚政治会考完来把它补上了2333.考数学去了. DP: 首先把无序化成有序,选严格递增的数,最后乘个\(n!\). 然后容易想到令\(f_{i,j}\)表示到第\(i\)个数, ...

  2. 【loj#6503.】「雅礼集训 2018 Day4」Magic(生成函数+容斥)

    题面 传送门 题解 复杂度比较迷啊-- 以下以\(n\)表示颜色总数,\(m\)表示总的卡牌数 严格\(k\)对比较难算,我们考虑容斥 首先有\(i\)对就代表整个序列被分成了\(m-i\)块互不相同 ...

  3. 洛谷P5206 [WC2019] 数树(生成函数+容斥+矩阵树)

    题面 传送门 前置芝士 矩阵树,基本容斥原理,生成函数,多项式\(\exp\) 题解 我也想哭了--orz rqy,orz shadowice 我们设\(T1,T2\)为两棵树,并定义一个权值函数\( ...

  4. [TJOI2019]唱、跳、rap和篮球——NTT+生成函数+容斥

    题目链接: [TJOI2019]唱.跳.rap和篮球 直接求不好求,我们考虑容斥,求出至少有$i$个聚集区间的方案数$ans_{i}$,那么最终答案就是$\sum\limits_{i=0}^{n}(- ...

  5. BZOJ 4455: [Zjoi2016]小星星(容斥+树形dp)

    传送门 解题思路 首先题目中有两个限制,第一个是两个集合直接必须一一映射,第二个是重新标号后,\(B\)中两点有边\(A\)中也必须有.发现限制\(2\)比较容易满足,考虑化简限制\(1\).令\(f ...

  6. 洛谷 P6295 - 有标号 DAG 计数(生成函数+容斥+NTT)

    洛谷题面传送门 看到图计数的题就条件反射地认为是不可做题并点开了题解--实际上这题以我现在的水平还是有可能能独立解决的( 首先连通这个条件有点棘手,我们尝试把它去掉.考虑这题的套路,我们设 \(f_n ...

  7. HDU 6270 Marriage (2017 CCPC 杭州赛区 G题,生成函数 + 容斥 + 分治NTT)

    题目链接  2017 CCPC Hangzhou Problem G 题意描述很清晰. 考虑每个家庭有且仅有$k$对近亲的方案数: $C(a, k) * C(b, k) * k!$ 那么如果在第$1$ ...

  8. BZOJ 2440 莫比乌斯函数+容斥+二分

    2440: [中山市选2011]完全平方数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 5473  Solved: 2679[Submit][Sta ...

  9. BZOJ 3771: Triple(FFT+容斥)

    题面 Description 我们讲一个悲伤的故事. 从前有一个贫穷的樵夫在河边砍柴. 这时候河里出现了一个水神,夺过了他的斧头,说: "这把斧头,是不是你的?" 樵夫一看:&qu ...

随机推荐

  1. xhr.readyState就绪状态

    0:初始化,XMLHttpRequest对象还没有完成初始化 1:载入,XMLHttpRequest对象开始发送请求 2:载入完成,XMLHttpRequest对象的请求发送完成 3:解析,XMLHt ...

  2. 《Java编程思想》第一二章

    前段时间一直通过网络教程学习Java基础,把面向对象部分学完之后本来打算继续深入学习,但是感觉自己操之过急了,基础根本不够扎实,所以入手了一本<Java编程思想>,希望先把基础打好,再深入 ...

  3. JS实现为控件添加倒计时功能

    一.概述 在有些报表需求中,需要为控件添加倒计时功能,限制到某一个时间点后能进行一项操作或不能进行某项操作,比如查询,导出功能等等,又需要人性化地显示还有多少时间,即倒计时功能,比如下图中我们限制这个 ...

  4. Struts2框架05 result标签的类型

    1 result标签是干什么的 就是结果,服务器处理完返回给浏览器的结果:是一个输出结果数据的组件 2 什么时候需要指定result标签的类型 把要输出的结果数据按照我们指定的数据类型进行处理 3 常 ...

  5. python cookbook第三版学习笔记十二:类和对象(三)创建新的类或实例属性

    先介绍几个类中的应用__getattr__,__setattr__,__get__,__set__,__getattribute__,. __getattr__:当在类中找不到attribute的时候 ...

  6. Mybatis初学笔记

    MyBatis环境搭建:1.需要mybatis-3.3.0.jar,将该jar包导入web工程的libs文件夹中:2.在src下新建一个mybatis-config.xml文件,mybatis的基本配 ...

  7. 【SpringMVC】【EasyUI】关于使用EasyUIForm上传文件,返回JsonIE提示下载文件的解决办法!

    先说一下环境 EasyUI+SpringMVC+MyBatis 因为按正常手段,无法使用Ajax来提交一个包含文件的表单,故想到利用EasyUI的Form来提交,EasyUI的form封装了一套伪Aj ...

  8. 从零开始打jar包

    经常会头疼于一个jar包是如何制作的,包括maven的打包方式,springboot的打jar包的原理,jar包稍稍有错误就会完全无法运行.在网上折腾了很久终于有些思路和步骤,在这里做个笔记 本文大纲 ...

  9. .babelrc 文件

    文件干啥用的 babel是降es6转义成浏览器能理解的es5语法. 如果项目中用了babel 转移,需要定义babel需要的插件和预设转码. babel 一般可以配合 webpack . browse ...

  10. 【LeetCode题解】动态规划:从新手到专家(一)

    文章标题借用了Hawstein的译文<动态规划:从新手到专家>. 1. 概述 动态规划( Dynamic Programming, DP)是最优化问题的一种解决方法,本质上状态空间的状态转 ...