Sqoop Java API 导入应用案例
环境信息:
Linux+JDK1.7
Sqoop 1.4.6-cdh5.5.2
hadoop-core 2.6.0-mr1-cdh5.5.2
hadoop-common 2.6.0-cdh5.5.2
hadoop-mapreduce-client-core 2.6.0-cdh5.5.2
需求:
将oracle中的某表导入到hdfs
实现:
首先组织Sqoop命令:
String[] args = new String[] { // Oracle数据库信息
"--connect","jdbc:oracle:thin:@***:1522/**",
"-username","***",
"-password","***",
// 查询sql
"--query","select * from TABLE_NAME where $CONDITIONS and create_date>=date'2017-05-01' and create_date<date'2017-06-01' ",
"-split-by","id",
"--hive-overwrite",
"--fields-terminated-by","'\\001'",
"--hive-drop-import-delims",
"--null-string","'\\\\N'",
"--null-non-string","'\\\\N'",
"--verbose",
"--target-dir","/user/hive/warehouse/test.db/H_TABLE_NAME"
};
执行Sqoop任务:
String[] expandArguments = OptionsFileUtil.expandArguments(args);
SqoopTool tool = SqoopTool.getTool("import");
Configuration conf = new Configuration();
conf.set("fs.default.name", "hdfs://nameservice1");//设置HDFS服务地址
Configuration loadPlugins = SqoopTool.loadPlugins(conf); Sqoop sqoop = new Sqoop((com.cloudera.sqoop.tool.SqoopTool) tool, loadPlugins);
int res = Sqoop.runSqoop(sqoop, expandArguments);
if (res == 0)
log.info ("成功");
完成编码后,发到测试环境进行测试,发现Sqoop在进行动态编译时报编译错误:
2017-07-26 15:10:15 [ERROR] [http-0.0.0.0-8080-6] [org.apache.sqoop.tool.ImportTool.run(ImportTool.java:613)] Encountered IOException running import job: java.io.IOException: Error returned by javac
at org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:217)
at org.apache.sqoop.tool.CodeGenTool.generateORM(CodeGenTool.java:108)
at org.apache.sqoop.tool.ImportTool.importTable(ImportTool.java:478)
at org.apache.sqoop.tool.ImportTool.run(ImportTool.java:605)
at org.apache.sqoop.Sqoop.run(Sqoop.java:143)
at org.apache.hadoop.util.ToolRunner.run(ToolRunner.java:70)
at org.apache.sqoop.Sqoop.runSqoop(Sqoop.java:179)
动态编译的日志如果没有特殊配置的话,是无法通过log4j进行输出的,因此,编译错误需要到系统日志里查找:
/tmp/sqoop-deploy/compile/b78440d7bc7097805be8b088c525566b/QueryResult.java:7: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.BytesWritable;
^
/tmp/sqoop-deploy/compile/b78440d7bc7097805be8b088c525566b/QueryResult.java:8: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.Text;
^
/tmp/sqoop-deploy/compile/b78440d7bc7097805be8b088c525566b/QueryResult.java:9: error: package org.apache.hadoop.io does not exist
import org.apache.hadoop.io.Writable;
^
/tmp/sqoop-deploy/compile/b78440d7bc7097805be8b088c525566b/QueryResult.java:37: error: cannot access Writable
public class QueryResult extends SqoopRecord implements DBWritable, Writable {
如上,推测是动态编译环境的classpath没有包含hadoop-common包导致的,在CompilationManager里查到了如下内容:
private String findHadoopJars() {
String hadoopMapRedHome = options.getHadoopMapRedHome(); if (null == hadoopMapRedHome) {
LOG.info("$HADOOP_MAPRED_HOME is not set");
return Jars.getJarPathForClass(JobConf.class);
} if (!hadoopMapRedHome.endsWith(File.separator)) {
hadoopMapRedHome = hadoopMapRedHome + File.separator;
} File hadoopMapRedHomeFile = new File(hadoopMapRedHome);
LOG.info("HADOOP_MAPRED_HOME is " + hadoopMapRedHomeFile.getAbsolutePath()); Iterator<File> filesIterator = FileUtils.iterateFiles(hadoopMapRedHomeFile,
new String[] { "jar" }, true);
StringBuilder sb = new StringBuilder(); while (filesIterator.hasNext()) {
File file = filesIterator.next();
String name = file.getName();
if (name.startsWith("hadoop-common")
|| name.startsWith("hadoop-mapreduce-client-core")
|| name.startsWith("hadoop-core")) {
sb.append(file.getAbsolutePath());
sb.append(File.pathSeparator);
}
} if (sb.length() < 1) {
LOG.warn("HADOOP_MAPRED_HOME appears empty or missing");
return Jars.getJarPathForClass(JobConf.class);
} String s = sb.substring(0, sb.length() - 1);
LOG.debug("Returning jar file path " + s);
return s;
}
推测是由于配置里没有hadoopMapRedHome这个参数,导致这个方法只能取到JobConf.class所在的jar包,即hadoop-core包。打开DEBUG进行验证,找到如下日志:
2017-07-26 15:10:14 [INFO] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.findHadoopJars(CompilationManager.java:85)] $HADOOP_MAPRED_HOME is not set
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:171)] Current sqoop classpath = :/usr/local/tomcat6/bin/bootstrap.jar
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:195)] Adding source file: /tmp/sqoop-deploy/compile/1baf2f947722b9531d4a27b1e5ef5aca/QueryResult.java
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:199)] Invoking javac with args:
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] -sourcepath
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] /tmp/sqoop-deploy/compile/1baf2f947722b9531d4a27b1e5ef5aca/
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] -d
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] /tmp/sqoop-deploy/compile/1baf2f947722b9531d4a27b1e5ef5aca/
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] -classpath
2017-07-26 15:10:14 [DEBUG] [http-0.0.0.0-8080-6] [org.apache.sqoop.orm.CompilationManager.compile(CompilationManager.java:201)] :/usr/local/tomcat6/bin/bootstrap.jar:/var/www/webapps/***/WEB-INF/lib/hadoop-core-2.6.0-mr1-cdh5.5.2.jar:/var/www/webapps/***/WEB-INF/lib/sqoop-1.4.6-cdh5.5.2.jar
果然是缺少了jar包。在CompilationManager中查到classpath的组装方式如下:
String curClasspath = System.getProperty("java.class.path");
LOG.debug("Current sqoop classpath = " + curClasspath); args.add("-sourcepath");
args.add(jarOutDir); args.add("-d");
args.add(jarOutDir); args.add("-classpath");
args.add(curClasspath + File.pathSeparator + coreJar + sqoopJar);
可以通过两种方式将缺失的jar添加进去:
1.直接修改java.class.path:
String curClasspath = System.getProperty ("java.class.path");
curClasspath = curClasspath
+ File.pathSeparator
+ "/var/www/webapps/***/WEB-INF/lib/hadoop-common-2.6.0-cdh5.5.2.jar"
+ File.pathSeparator
+ "/var/www/webapps/***/WEB-INF/lib/hadoop-mapreduce-client-core-2.6.0-cdh5.5.2.jar";
System.setProperty ("java.class.path", curClasspath);
2.增加配置项(未尝试):
--hadoop-mapred-home <dir>
指定$HADOOP_MAPRED_HOME路径
使用第一种方式后,已经能够正常进行导入操作:
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.JobClient.monitorAndPrintJob(JobClient.java:1547)] Job complete: job_local703153215_0001
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:566)] Counters: 18
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:568)] File System Counters
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] FILE: Number of bytes read=15015144
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] FILE: Number of bytes written=15688984
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] FILE: Number of read operations=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] FILE: Number of large read operations=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] FILE: Number of write operations=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] HDFS: Number of bytes read=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] HDFS: Number of bytes written=1536330810
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] HDFS: Number of read operations=40
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] HDFS: Number of large read operations=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] HDFS: Number of write operations=36
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:568)] Map-Reduce Framework
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Map input records=3272909
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Map output records=3272909
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Input split bytes=455
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Spilled Records=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] CPU time spent (ms)=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Physical memory (bytes) snapshot=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Virtual memory (bytes) snapshot=0
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.hadoop.mapred.Counters.log(Counters.java:570)] Total committed heap usage (bytes)=4080271360
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.sqoop.mapreduce.ImportJobBase.runJob(ImportJobBase.java:184)] Transferred 1.4308 GB in 71.5332 seconds (20.4822 MB/sec)
2017-07-26 15:52:00 [INFO] [http-0.0.0.0-8080-1] [org.apache.sqoop.mapreduce.ImportJobBase.runJob(ImportJobBase.java:186)] Retrieved 3272909 records.
至此,Sqoop Java API 导入demo完成。
参考文章:
http://shiyanjun.cn/archives/624.html Sqoop-1.4.4工具import和export使用详解
http://blog.csdn.net/sl1992/article/details/53521819 Java操作Sqoop对象
Sqoop Java API 导入应用案例的更多相关文章
- ElasticSearch7.3学习(二十九)----聚合实战之使用Java api实现电视案例
一.数据准备 创建索引及映射 建立价格.颜色.品牌.售卖日期字段 PUT /tvs PUT /tvs/_mapping { "properties": { "price& ...
- _00017 Kafka的体系结构介绍以及Kafka入门案例(0基础案例+Java API的使用)
博文作者:妳那伊抹微笑 itdog8 地址链接 : http://www.itdog8.com(个人链接) 博客地址:http://blog.csdn.net/u012185296 博文标题:_000 ...
- Phoenix简介概述,Phoenix的Java API 相关操作优秀案例
Phoenix简介概述,Phoenix的Java API 相关操作优秀案例 一.Phoenix概述简介 二.Phoenix实例一:Java API操作 2.1 phoenix.properties 2 ...
- Json for Java API学习
首先声明:本文来个非常多网友的博客,我通过參考了他们的博客,大致的了解了一些项目中经常使用的Json in java 类和方法,以及关于json的个人理解 个人对json的一些简单理解 在近期的学习中 ...
- [转]Java中导入、导出Excel
原文地址:http://blog.csdn.net/jerehedu/article/details/45195359 一.介绍 当前B/S模式已成为应用开发的主流,而在企业办公系统中,常常有客户这样 ...
- Java API 快速速查宝典
Java API 快速速查宝典 作者:明日科技,陈丹丹,李银龙,王国辉 著 出版社:人民邮电出版社 出版时间:2012年5月 Java编程的最基本要素是方法.属性和事件,掌握这些要素,就掌握了解决实际 ...
- sqoop1.99.4 JAVA API操作
貌似天国还没有介绍1.99.4的java操作代码的,自己吃一次螃蟹吧 如果你是MAVEN项目 <dependency> <groupId>org.apache.sqoop< ...
- Java的导入与导出Excel
使用Jakarta POI导入.导出Excel Jakarta POI 是一套用于访问微软格式文档的Java API.Jakarta POI有很多组件组成,其中有用于操作Excel格式文件的HSSF和 ...
- MyEclipse下查看Java API帮助文档
每次重装JDK或者升级JDK时,都会忘了如何使MyEclipse关联帮助文档.然后,再花十几分钟重新google搜索,麻烦! 首先下载Javadoc api帮助文档,google搜一下就行了. MyE ...
随机推荐
- NodeMCU透传数据到TcpServer和Yeelink平台
准备工作 1. NodeMCU LUA ESP8266 CP2102 WIFI Internet Development Board,仔细看背面可以看出自带cp2102模块,可以通过普通的手机充电 ...
- pb传输优化浅谈
在正式切入今天要谈的优化之前,先碎碎念一些自己过去这几年的经历.很久没有登录过博客园了,今天也是偶然兴起打开上来看一下,翻看了下自己的随笔,最后一篇原创文章发布时间是2015年的4月,今天是2017年 ...
- qt编译的基于xlib cairo的桌面程序
在*.pro中添加以下代码: INCLUDEPATH += /usr/include/cairo LIBS += -lX11 -lcairo 在ubuntu16下编译通过
- B树和B+树的总结
B树 为什么要B树 磁盘中有两个机械运动的部分,分别是盘片旋转和磁臂移动.盘片旋转就是我们市面上所提到的多少转每分钟,而磁盘移动则是在盘片旋转到指定位置以后,移动磁臂后开始进行数据的读写.那么这就存在 ...
- Bash中的特殊变量和位置参量
位置参量:向脚本或函数传递的参数,可以被set命令设置.重置和清空. 1.$$ 当前Shell的PID 2.$- 当前Shell的选项,如果是交互式shell,应该包含字符i,例如$ echo $-h ...
- 记一次服务器Tomcat优化经历
公司需要一台测试服务器来做测试用,所以花了几天时间把服务全部部署好,在部署好war包之后,发现Tomcat访问超级慢. 1.进入Tomcat的bin目录下,运行 ./catalina.sh run命令 ...
- win7休眠的开启与关闭方法
从开始菜单中找到“附件→命令提示符”,右击选择“以管理员身份运行”,此时可能需要输入管理员密码或进行UAC确认,手工输入如下命令:powercfg -a,从这里可以清楚的看到,计算机是支持休眠的,只是 ...
- Chapter 4. The MPEG-4 and H.264 Standards
本章节介绍一些关于MPEG-4标准与H.264标准的基本知识 比较重要的是第95页关于两种标准的对比表格.其他部分没有什么特别重要的细节.
- Ionic2+ 环境搭建
ionic2+官方guide 基础环境安装 nodejs安装 ionic,cordova安装 npm install -g ionic cordova 项目创建 ionic start MyIonic ...
- [Android FrameWork 6.0源码学习] LayoutInflater 类分析
LayoutInflater是用来解析XML布局文件,然后生成对象的ViewTree的工具类.是这个工具类的存在,才能让我们写起Layout来那么省劲. 我们接下来进去刨析,看看里边的奥秘 //调用i ...