i

mport tensorflow as tf
import numpy as np # 添加层
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs # 1.训练的数据
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # 2.定义节点准备接收数据
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 3.定义神经层:隐藏层和预测层
# add hidden layer 输入值是 xs,在隐藏层有 10 个神经元
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer 输入值是隐藏层 l1,在预测层输出 1 个结果
prediction = add_layer(l1, 10, 1, activation_function=None) # 4.定义 loss 表达式
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1])) # 5.选择 optimizer 使 loss 达到最小
# 这一行定义了用什么方式去减少 loss,学习率是 0.1
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step 对所有变量进行初始化
init = tf.initialize_all_variables()
sess = tf.Session()
# 上面定义的都没有运算,直到 sess.run 才会开始运算
sess.run(init) # 迭代 1000 次学习,sess.run optimizer
for i in range(1000):
# training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

参考:http://www.jianshu.com/p/e112012a4b2d

tensorflow 实现神经网络的更多相关文章

  1. 用Tensorflow让神经网络自动创造音乐

    #————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Ten ...

  2. (转)一文学会用 Tensorflow 搭建神经网络

    一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day ...

  3. 用Tensorflow搭建神经网络的一般步骤

    用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入 ...

  4. Tensorflow卷积神经网络[转]

    Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Te ...

  5. 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)

    1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...

  6. 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类

    使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...

  7. 一文学会用 Tensorflow 搭建神经网络

    http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码 ...

  8. tensorflow之神经网络实现流程总结

    tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate ...

  9. 【零基础】使用Tensorflow实现神经网络

    一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而 ...

  10. 使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in position 78: invalid continuation byte

    使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in pos ...

随机推荐

  1. MACOS关闭指定端口

    因为用IDEA写项目的时候,有的时候结束Jetty导致端口没有释放,所以会出现占用的情况. MacOS结束端口占用进程的命令,和Linux的一样.先执行如下命令: lsof -i:8080 会有类似下 ...

  2. Spring学习(21)--- AOP之Advice应用(上)

    前置通知(Before advice) 在某个连接点(join point)之前执行的通知,但不能阻止连接点前的执行(除非它抛出异常) 返回后通知(After returning advice) 在某 ...

  3. IntelliJ IDEA提示:Error during artifact deployment. See server log for details.

    IntelliJ IDEA-2017.1.1 tomcat-8.5.13   问题:在IntelliJ IDEA中使用tomcat部署web app时,提示:Error during artifact ...

  4. RabbitMQ分布式消息队列服务器(一、Windows下安装和部署)

    RabbitMQ消息队列服务器在Windows下的安装和部署-> 一.Erlang语言环境的搭建 RabbitMQ开源消息队列服务是使用Erlang语言开发的,因此我们要使用他就必须先进行Erl ...

  5. C++实现密码强度测试

    最近在博客中看到许多用js写的密码强度检测,我觉得挺有意思的,所以呢我打算自己也写个来玩玩,最可悲的是我还没学js,当然这不重要,所以呢打算用C++来写一个密码强度检测,这里我来给大家说说用JS写的和 ...

  6. [转] 传说中的WCF(2):服务协定的那些事儿

    上一篇文章中,我们抛出了N个问题:WCF到底难不难学?复杂吗?如果复杂,可以化繁为简吗? 其实,这些问题的答案全取决于你的心态,都说“态度决定一切”,这句话,不知道各位信不信,反正我是信了.首先,敢于 ...

  7. scrapy抓取淘宝女郎

    scrapy抓取淘宝女郎 准备工作 首先在淘宝女郎的首页这里查看,当然想要爬取更多的话,当然这里要查看翻页的url,不过这操蛋的地方就是这里的翻页是使用javascript加载的,这个就有点尴尬了,找 ...

  8. EJB系列 - 会话Bean基础知识

    本人博客文章网址:https://www.peretang.com/basic-knowledge-of-session-bean/ 什么是会话 有限的时间周期内,客户端和服务器之间的连接 为什么使用 ...

  9. [HNOI2007]紧急疏散EVACUATE (湖南2007年省选)

    [HNOI2007]紧急疏散EVACUATE 题目描述 发生了火警,所有人员需要紧急疏散!假设每个房间是一个N M的矩形区域.每个格子如果是'.',那么表示这是一块空地:如果是'X',那么表示这是一面 ...

  10. [iOS]从零开始开发一个即时通讯APP

    前言 这是我的毕业设计.刚开始确定这个课题的时候是因为以前有稍微研究过一些XMPP协议,在这个基础上做起来应该不难.然后开始选技术的时候还有半年,我想为什么不从更底层做起呢!那就不用XMPP,当时接触 ...