tensorflow 实现神经网络
i mport tensorflow as tf
import numpy as np # 添加层
def add_layer(inputs, in_size, out_size, activation_function=None):
# add one more layer and return the output of this layer
Weights = tf.Variable(tf.random_normal([in_size, out_size]))
biases = tf.Variable(tf.zeros([1, out_size]) + 0.1)
Wx_plus_b = tf.matmul(inputs, Weights) + biases
if activation_function is None:
outputs = Wx_plus_b
else:
outputs = activation_function(Wx_plus_b)
return outputs # 1.训练的数据
# Make up some real data
x_data = np.linspace(-1,1,300)[:, np.newaxis]
noise = np.random.normal(0, 0.05, x_data.shape)
y_data = np.square(x_data) - 0.5 + noise # 2.定义节点准备接收数据
# define placeholder for inputs to network
xs = tf.placeholder(tf.float32, [None, 1])
ys = tf.placeholder(tf.float32, [None, 1]) # 3.定义神经层:隐藏层和预测层
# add hidden layer 输入值是 xs,在隐藏层有 10 个神经元
l1 = add_layer(xs, 1, 10, activation_function=tf.nn.relu)
# add output layer 输入值是隐藏层 l1,在预测层输出 1 个结果
prediction = add_layer(l1, 10, 1, activation_function=None) # 4.定义 loss 表达式
# the error between prediciton and real data
loss = tf.reduce_mean(tf.reduce_sum(tf.square(ys - prediction),
reduction_indices=[1])) # 5.选择 optimizer 使 loss 达到最小
# 这一行定义了用什么方式去减少 loss,学习率是 0.1
train_step = tf.train.GradientDescentOptimizer(0.1).minimize(loss) # important step 对所有变量进行初始化
init = tf.initialize_all_variables()
sess = tf.Session()
# 上面定义的都没有运算,直到 sess.run 才会开始运算
sess.run(init) # 迭代 1000 次学习,sess.run optimizer
for i in range(1000):
# training train_step 和 loss 都是由 placeholder 定义的运算,所以这里要用 feed 传入参数
sess.run(train_step, feed_dict={xs: x_data, ys: y_data})
if i % 50 == 0:
# to see the step improvement
print(sess.run(loss, feed_dict={xs: x_data, ys: y_data}))

参考:http://www.jianshu.com/p/e112012a4b2d
tensorflow 实现神经网络的更多相关文章
- 用Tensorflow让神经网络自动创造音乐
#————————————————————————本文禁止转载,禁止用于各类讲座及ppt中,违者必究————————————————————————# 前几天看到一个有意思的分享,大意是讲如何用Ten ...
- (转)一文学会用 Tensorflow 搭建神经网络
一文学会用 Tensorflow 搭建神经网络 本文转自:http://www.jianshu.com/p/e112012a4b2d 字数2259 阅读3168 评论8 喜欢11 cs224d-Day ...
- 用Tensorflow搭建神经网络的一般步骤
用Tensorflow搭建神经网络的一般步骤如下: ① 导入模块 ② 创建模型变量和占位符 ③ 建立模型 ④ 定义loss函数 ⑤ 定义优化器(optimizer), 使 loss 达到最小 ⑥ 引入 ...
- Tensorflow卷积神经网络[转]
Tensorflow卷积神经网络 卷积神经网络(Convolutional Neural Network, CNN)是一种前馈神经网络, 在计算机视觉等领域被广泛应用. 本文将简单介绍其原理并分析Te ...
- 深度学习原理与框架-Tensorflow卷积神经网络-cifar10图片分类(代码) 1.tf.nn.lrn(局部响应归一化操作) 2.random.sample(在列表中随机选值) 3.tf.one_hot(对标签进行one_hot编码)
1.tf.nn.lrn(pool_h1, 4, bias=1.0, alpha=0.001/9.0, beta=0.75) # 局部响应归一化,使用相同位置的前后的filter进行响应归一化操作 参数 ...
- 深度学习原理与框架-Tensorflow卷积神经网络-神经网络mnist分类
使用tensorflow构造神经网络用来进行mnist数据集的分类 相比与上一节讲到的逻辑回归,神经网络比逻辑回归多了隐藏层,同时在每一个线性变化后添加了relu作为激活函数, 神经网络使用的损失值为 ...
- 一文学会用 Tensorflow 搭建神经网络
http://www.jianshu.com/p/e112012a4b2d 本文是学习这个视频课程系列的笔记,课程链接是 youtube 上的,讲的很好,浅显易懂,入门首选, 而且在github有代码 ...
- tensorflow之神经网络实现流程总结
tensorflow之神经网络实现流程总结 1.数据预处理preprocess 2.前向传播的神经网络搭建(包括activation_function和层数) 3.指数下降的learning_rate ...
- 【零基础】使用Tensorflow实现神经网络
一.序言 前面已经逐步从单神经元慢慢“爬”到了神经网络并把常见的优化都逐个解析了,再往前走就是一些实际应用问题,所以在开始实际应用之前还得把“框架”翻出来,因为后面要做的工作需要我们将精力集中在业务而 ...
- 使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in position 78: invalid continuation byte
使用 Visual Studio 2015 + Python3.6 + tensorflow 构建神经网络时报错:'utf-8' codec can't decode byte 0xcc in pos ...
随机推荐
- java原生实现屏幕设备遍历和屏幕采集(捕获)等功能
前言:本章中屏幕捕获使用原生java实现,屏幕图像显示采用javacv1.3的CanvasFrame 一.实现的功能 1.屏幕设备遍历 2.本地屏幕图像采集(也叫屏幕图像捕获) 3.播放本地图像(采用 ...
- winform中的 datagriview 字段自动填充长度
在winfrom 的 datagridview 中 绑定字段 经常回在最后面空出一部分来,显得不美观, 现在教大家如何让它自适应宽度 public static void Autogrid(DataG ...
- 每天一个JS 小demo之新建文件夹。主要知识点:DOM方法的综合运用
<!DOCTYPE html><html lang="en"><head><meta charset="UTF-8"& ...
- 基于C#的接口自动化测试(一)
其实就是找个地方然后给关键的代码做个笔记什么的-- 字符串访问API接口,访问方法为POST: string url = URL; string RequestParam = Param; strin ...
- [0] MVC&MVP&MVVM差异点
MVC: 用户的请求首先会到达Controller,由Controller从Model获取数据,选择合适的View,把处理结果呈现到View上: MVP: 用户的请求首先会到达View,View传递请 ...
- 单例模式与静态变量在PHP中
在PHP中,没有普遍意义上的静态变量.与Java.C++不同,PHP中的静态变量的存活周期仅仅是每次PHP的会话周期,所以注定了不会有Java或者C++那种静态变量. 1. 静态变量在PHP中 在PH ...
- [leetcode-628-Maximum Product of Three Numbers]
Given an integer array, find three numbers whose product is maximum and output the maximum product. ...
- XML 新手入门基础知识(复制,留着自己看)
如果您是 XML 新手,本文将为您介绍 XML 文档的基础结构,以及创建构造良好的 XML 需要遵循的规则,包括命名约定.正确的标记嵌套.属性规则.声明和实体.您还可以从本文了解到 DTD 和 sch ...
- Linux 压缩 与解压命令
tar命令 解包:tar zxvf FileName.tar 打包:tar czvf FileName.tar DirName gz命令 解压1:gunzip FileName.gz 解压2:gzip ...
- 为实体类增加toJSON方法
后期子类继承该基础类即可. package com.lichmama.test; import java.io.Serializable; import java.lang.reflect.Field ...