误差逆传播算法是迄今最成功的神经网络学习算法,现实任务中使用神经网络时,大多使用BP算法进行训练。

  给定训练集\(D={(x_1,y_1),(x_2,y_2),......(x_m,y_m)},x_i \in R^d,y_i \in R^l\),即输入示例由\(d\)个属性描述,输出\(l\)个结果。如图所示,是一个典型的单隐层前馈网络,它拥有\(d\)个输入神经元、\(l\)个输出神经元、\(q\)个隐层神经元,其中,\(\theta_j\)表示第\(j\)个神经元的阈值,\(\gamma_h\)表示隐层第\(h\)个神经元的阈值,输入层第\(i\)个神经元与隐层第\(h\)个神经元连接的权值是\(v_{ih}\),隐层第\(h\)个神经元与输出层第\(j\)个神经元连接的权值是\(w_{hj}\)。

  于是,按照神经网络的传输法则,隐层第\(h\)个神经元接收到的输入\(\alpha_h=\sum_{i=1}^dv_{ih}x_i\),输出\(b_h=f(\alpha_h-\gamma_h)\),输出层\(j\)第个神经元的输入\(\beta_j=\sum_{h=1}^qw_{hj}b_h\),输出\(\widehat{y}_j^k=f(\beta_j-\theta_j)\),其中\(f\)函数是“激活函数”,\(\gamma_h\)和\(\theta_j\)分别是隐藏层和输出层的阈值,选择Sigmoid函数\(f(x)=\frac{1}{1+e^{-x}}\)作为激活函数。

  对训练样例\((x_k,y_k)\),通过神经网络后的输出是\(\widehat{y}_k=(\widehat{y}_1^k,\widehat{y}_2^k,......,\widehat{y}_l^k)\),则其均方误差为

\[E_k=\frac{1}{2}\sum_{j=1}^{l}(\widehat{y}_j^k-y_j^k)^2(1)\]

为了使输出的均方误差最小,我们以均方误差对权值的负梯度方向进行调整,给定学习率\(\eta\),

\[\Delta w_{ij}=-\eta\frac{\partial E_k}{\partial w_{ij}}\ (2)
\]这里为什么是取负梯度方向呢?因为我们是要是均方误差最小,而

\(w\)的更新估计式为\[w=w+\Delta w (3)
\]如果,\(\frac{\partial E_k}{\partial w_{ij}}>0\),则表明减小\(w\)才能减小均方误差,所以\(\Delta w\)应该小于零,反之,如果\(\frac{\partial E_k}{\partial w_{ij}}<0\),则表明增大\(w\)的值可以减小均方误差,所以所以\(\Delta w\)应该大于零,所以在这里取负的偏导,以保证权值的改变是朝着减小均方误差的方向进行。

  在这个神经网络中,\(E_k\)是有关\(\widehat{y}_j^k\)的函数,\(\widehat{y}_j^k\)是有关\(\beta_j\)的函数,而\(\beta_j\)是有关\(w_{ij}\)的函数,所以有

\[\frac{\partial E_k}{\partial w_{ij}}=\frac{\partial E_k}{\partial \widehat{y}_j^k}.\frac{\partial \widehat{y}_j^k}{\partial \beta_j}. \frac{\partial \beta_j}{\partial w_{ij}} (4)
\]显然,

\[\frac{\partial \beta_j}{\partial w_{ij}}=b_h (5)
\]而对Sigmoid函数有

\[f'(x)=f(x)(1-f(x)) (6)
\]所以

\[\begin{aligned}g_j&=-\frac{\partial E_k}{\partial\widehat{y}_j^k}. \frac{\partial\widehat{y}_j^k}{\partial\beta_j}\\
&=-(\widehat{y}^k_j-y^k_j)f'(\beta_j-\theta_j)\\
&=-(\widehat{y}^k_j-y^k_j)f(\beta_j-\theta_j)(1-f(\beta_j-\theta_j))\\
&=-(\widehat{y}^k_j-y^k_j)\widehat{y}^k_j(1-\widehat{y}^k_j)\end{aligned} (7)
\]将式(7)代入式(3)和式(4),就得到BP算法中关于\(\Delta w_{ij}\)的更新公式

\[\Delta w_{ij}=\eta g_jb_h (8)
\]类似可得,

\[\Delta \theta_j=-\eta g_j (9)
\]\[\Delta v_{ih}=\eta e_hx_i (10)
\]\[\Delta \gamma_h=-\eta e_h (11)
\]其中,式(10)和式(11)中

\[\begin{aligned}e_h&=-\frac{\partial E_k}{\partial b_h}.\frac{\partial b_h}{\partial \alpha_h}\\&=-\sum_{j=1}^l\frac{\partial E_k}{\partial \beta_j}.\frac{\partial \beta_j}{\partial b_h}f'(\alpha_h-\gamma_h)\\&=\sum_{j=1}^lw_{hi}g_jf'(\alpha_h-\gamma_h)\\&=b_h(1-b_h)\sum_{j=1}^lw_{hj}g_j\end{aligned} (12)\]

  至此,误差逆传播算法的推导已经完成,我们可以回过头看看,该算法为什么被称为误差逆传播算法呢?误差逆传播,顾名思义是让误差沿着神经网络反向传播,根据上面的推导, \(\Delta w_{ij}=-\eta(\widehat{y}^k_j-y^k_j).\frac{\partial \widehat{y}_j^k}{\partial \beta_j}.b_h=\eta g_jb_h\),其中,\((\widehat{y}^k_j-y^k_j)\)是输出误差,\(\frac{\partial \widehat{y}_j^k}{\partial \beta_j}\) 是输出层节点的输出\(y\)对于输入\(\beta\)的偏导数,可以看做是误差的调节因子,我们称\(g_j\)为“调节后的误差”;而\(\Delta v_{ih}=\eta e_hx_i\),\(e_h=b_h(1-b_h)\sum_{j=1}^lw_{hj}g_j=\frac{\partial b_h}{\partial \alpha_h}\sum_{j=1}^lw_{hj}g_j\),所以\(e_h\)可以看做是“调节后的误差”\(g_j\)通过神经网络后并经过调节的误差,并且我们可以看出:权值的调节量=学习率x调节后的误差x上层节点的输出,算是对于误差逆向传播法表面上的通俗理解,有助于记忆。

神经网络 误差逆传播算法推导 BP算法的更多相关文章

  1. 神经网络和误差逆传播算法(BP)

    本人弱学校的CS 渣硕一枚,在找工作的时候,发现好多公司都对深度学习有要求,尤其是CNN和RNN,好吧,啥也不说了,拿过来好好看看.以前看习西瓜书的时候神经网络这块就是一个看的很模糊的块,包括台大的视 ...

  2. 误差逆传播(error BackPropagation, BP)算法推导及向量化表示

    1.前言 看完讲卷积神经网络基础讲得非常好的cs231后总感觉不过瘾,主要原因在于虽然知道了卷积神经网络的计算过程和基本结构,但还是无法透彻理解卷积神经网络的学习过程.于是找来了进阶的教材Notes ...

  3. 人工智能起步-反向回馈神经网路算法(BP算法)

    人工智能分为强人工,弱人工. 弱人工智能就包括我们常用的语音识别,图像识别等,或者为了某一个固定目标实现的人工算法,如:下围棋,游戏的AI,聊天机器人,阿尔法狗等. 强人工智能目前只是一个幻想,就是自 ...

  4. 人工神经网络反向传播算法(BP算法)证明推导

    为了搞明白这个没少在网上搜,但是结果不尽人意,最后找到了一篇很好很详细的证明过程,摘抄整理为 latex 如下. (原文:https://blog.csdn.net/weixin_41718085/a ...

  5. 深度学习——前向传播算法和反向传播算法(BP算法)及其推导

    1 BP算法的推导 图1 一个简单的三层神经网络 图1所示是一个简单的三层(两个隐藏层,一个输出层)神经网络结构,假设我们使用这个神经网络来解决二分类问题,我们给这个网络一个输入样本,通过前向运算得到 ...

  6. Backpropagation反向传播算法(BP算法)

    1.Summary: Apply the chain rule to compute the gradient of the loss function with respect to the inp ...

  7. BP(back propagation)误差逆传播神经网络

    [学习笔记] BP神经网络是一种按误差反向传播的神经网络,它的基本思想还是梯度下降法,中间隐含层的误差和最后一层的误差存在一定的数学关系,(可以计算出来),就像误差被反向传回来了,所以顾名思义BP.想 ...

  8. 多层神经网络BP算法 原理及推导

    首先什么是人工神经网络?简单来说就是将单个感知器作为一个神经网络节点,然后用此类节点组成一个层次网络结构,我们称此网络即为人工神经网络(本人自己的理解).当网络的层次大于等于3层(输入层+隐藏层(大于 ...

  9. BP神经网络算法推导及代码实现笔记zz

    一. 前言: 作为AI入门小白,参考了一些文章,想记点笔记加深印象,发出来是给有需求的童鞋学习共勉,大神轻拍! [毒鸡汤]:算法这东西,读完之后的状态多半是 --> “我是谁,我在哪?” 没事的 ...

随机推荐

  1. Springmvc ModelAndView踩过的坑之HttpServletResponse response

    先抛出问题.以下两个方法声明有毛区别: @RequestMapping(value = "/rg") public void rg(@PathVariable Long pageI ...

  2. FreeRTOS--疑难解答

    此章节涉及新手最常遇见的3种问题: 错误的中断优先级设置 栈溢出 不恰当的使用printf() 使用configASSERT()能够显著地提高生产效率,它能够捕获.识别多种类型的错误.强烈建议在开发或 ...

  3. MySQL安装(yum、二进制、源码)

    MySQL安装(yum.二进制.源码) 目录 1.1 yum安装... 2 1.2 二进制安装-mysql-5.7.17. 3 1.2.1 准备工作... 3 1.2.2 解压.移动.授权... 3 ...

  4. eclipse中Cannot change version of project facet Dynamic Web Module to 2.5.

    Cannot change version of project facet Dynamic Web Module to 2.5.这个错误可能很多人都碰到过,这里网上查了一些资料,解决的问题.所以这里 ...

  5. js 继承的简单易懂小例子

    js 继承 今天主要说原型链继承.构造继承.组合继承三种常用继承方式,分享一下我的理解. 原型链继承例子1 //原型继承function A(name){ this.name = name;}func ...

  6. Java---Ajax在Struts2框架的应用实例

    Ajax 是一种在无需重新加载整个网页的情况下,能够更新部分网页的技术. 很久没有动过ajax了,趁此机会复习一下,写一个简单的例子 一.项目结构: 二.需要的jar包 三.具体代码: 1.web.x ...

  7. 《iOS Human Interface Guidelines》——Multitasking

    多任务处理 多任务处理让人们在屏幕上(以及合适的iPad模式)查看多个app,而且在近期使用的app中高速地切换. 在iOS 9中.人们能够使用多任务处理UI(例如以下所看到的)来选择一个近期使用的a ...

  8. 哈希表(散列)HashTable实现

    近期刷Leetcode发现凡是找字符串中反复字符或者数组中找反复数据的时候就不知道从何下手了. 所以决定学习一下哈希表解题.哈希表的原理主要是解决分类问题,hash表是介于链表和二叉树之间的一种中间结 ...

  9. SpringMVC上传图片并压缩及剪切demo

    /** * */ package com.up.controller; import java.awt.Image; import java.awt.image.BufferedImage; impo ...

  10. Android事件拦截机制简单分析

    前一阶段,在学习的时候,遇到了我觉得的我接触安卓以来的最多的一次事件拦截出来,那个项目,用到了slidemenu側滑菜单条,然后加上tab标签,还有轮播广告,listview上下滑动.viewpage ...