AC自动机,树上莫队,树状数组。。

  比赛的时候完全看不出来...赛后去膜了一波网上题解才明白= =

  离线,先把AC自动机建出来,把fail边反向建出fail树。

  发射言弹,就是将言弹结束节点的fail子树内点权+1;

  查询证言受的伤害,就是查询证言的每个前缀的结束节点的点权和。

  前缀的结束节点的点权和,也就是AC自动机上,根到证言结束位置路径上的点权和。

  每一个查询,就是查询在一段时间内,根到证言结束位置路径上的点权和。。。

  所以就树上莫队一波了。。前两维时间,第三维是AC自动机上的位置。。再来个树状数组维护一波...

  时间复杂度O(n^(3/5)logn)。。。。卡时过的。。。还要注意一下块的大小。。。

 #include<cstdio>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
#define ll long long
using namespace std;
const int maxn=<<;
struct zs{int too,pre;}e[maxn];int tt,last[maxn];
struct ask{int x,tim,timl,id;}b[maxn];
int B[maxn];
int ch[maxn][],fail[maxn],dl[maxn],cnt;
int dfn[maxn],mp[maxn],TIME,L[maxn],R[maxn],TIM;
int pos[maxn],pos1[maxn],tim1[maxn],a[maxn];
int i,j,k,n,m;
ll sum,an[maxn];
bool u[maxn]; int ra;char rx;
inline int read(){
rx=getchar(),ra=;
while(rx<''||rx>'')rx=getchar();
while(rx>=''&&rx<='')ra*=,ra+=rx-,rx=getchar();return ra;
} void dfs(int x){
L[x]=++TIM;
for(int i=last[x];i;i=e[i].pre)
dfs(e[i].too);
R[x]=TIM;//printf(" x:%d l--r:%d %d\n",x,L[x],R[x]);
}
void dfs2(int x){
dfn[x]=++TIME,mp[TIME]=x;//printf("x:%d dfn:%d\n",x,dfn[x]);
for(int i=;i<;i++)if(ch[x][i])
dfs2(ch[x][i]);
mp[++TIME]=x;
}
inline void insert(int a,int b){e[++tt].too=b,e[tt].pre=last[a],last[a]=tt;/*printf("%d-->%d\n",a,b);*/} int t[maxn],t1[maxn];
inline void add1(int x){/*printf(" add1:%d\n",x);*/while(x<=cnt)t1[x]++,x+=x&-x;}
inline void del1(int x){/*printf(" del1:%d\n",x);*/while(x<=cnt)t1[x]--,x+=x&-x;}
inline int get1(int l,int r){
int sm=;//printf(" get1:%d--%d",l,r);
l--;while(l)sm-=t1[l],l-=l&-l;
while(r)sm+=t1[r],r-=r&-r;/*printf(": %d\n",sm);*/return sm;
} inline int get(int x){
// printf("get:%d",x);
int sm=;while(x)sm+=t[x],x-=x&-x;//printf(" %d\n",sm);
return sm;
}
inline void add(int l,int r){
if(!l)return;//printf("add: %d--%d\n",l,r);
sum+=get1(l,r);
while(l<=cnt)t[l]++,l+=l&-l;
r++;while(r<=cnt)t[r]--,r+=r&-r;
}
inline void del(int l,int r){
if(!l)return;//printf("del: %d--%d\n",l,r);
sum-=get1(l,r);
while(l<=cnt)t[l]--,l+=l&-l;
r++;while(r<=cnt)t[r]++,r+=r&-r;
} void getfail(){
int l=,r=,i,p,now,j;dl[]=;
while(l<r){
now=dl[++l];
for(i=;i<;i++)if(ch[now][i]){
dl[++r]=j=ch[now][i];
for(p=fail[now];p&&!ch[p][i];p=fail[p]);
fail[j]=!now?:ch[p][i],insert(fail[j],j);
}
}
} bool cmp(ask a,ask b){
return B[a.timl]==B[b.timl]?(B[a.tim]==B[b.tim]?a.x<b.x:B[a.tim]<B[b.tim]):B[a.timl]<B[b.timl];
}
int main(){
m=read();char id[],c[];int x,tm=,numb=,n=,n1=;
for(i=;i<=m;i++){
scanf("%s",id);
if(id[]=='I'){
n++,scanf("%s",c),c[]-='a',x=read();
if(!ch[pos[x]][c[]])ch[pos[x]][c[]]=++cnt;//printf(" .. %d %d\n",pos[x],c[0]);
pos[n]=ch[pos[x]][c[]];//,tim[n]=tm;
}
if(id[]=='A'){
n1++,scanf("%s",c),c[]-='a',x=read();
if(!ch[pos1[x]][c[]])ch[pos1[x]][c[]]=++cnt;//,printf(" %d %d\n",pos1[x],c[0]);
pos1[n1]=ch[pos1[x]][c[]],tim1[n1]=tm;
}
if(id[]=='S')
tm++,a[tm]=pos[read()];
if(id[]=='Q')
b[++numb].x=read(),b[numb].tim=tm,b[numb].timl=tim1[b[numb].x]+,b[numb].id=numb;
}
cnt++;
getfail();
dfs(),dfs2();int kuai=(int)pow(tm,1.8/)+;
for(i=;i<=tm+;i++)B[i]=(i+kuai-)/kuai;
for(i=;i<=numb;i++)b[i].x=dfn[pos1[b[i].x]];
sort(b+,b++numb,cmp); int l=,r=,pos=;L[]=R[]=,u[mp[]]=;
for(i=;i<=numb;i++){
// printf("ask: %d--%d %d--%d x:%d sum:%lld\n",b[i].timl,b[i].tim,B[b[i].timl],B[b[i].tim],b[i].x,sum);
while(l>b[i].timl)l--,add(L[a[l]],R[a[l]]);
while(r<b[i].tim)r++,add(L[a[r]],R[a[r]]);
while(l<b[i].timl)del(L[a[l]],R[a[l]]),l++;
while(r>b[i].tim)del(L[a[r]],R[a[r]]),r--;//printf("sum: %lld\n",sum);
while(pos>b[i].x){
if(u[mp[pos]])sum-=get(L[mp[pos]]),del1(L[mp[pos]]);else sum+=get(L[mp[pos]]),add1(L[mp[pos]]);
u[mp[pos]]^=,pos--;
}
while(pos<b[i].x){
pos++;//printf("x: %d dfn:%d L:%d\n",mp[pos],pos,L[mp[pos]]);
if(u[mp[pos]])sum-=get(L[mp[pos]]),del1(L[mp[pos]]);else sum+=get(L[mp[pos]]),add1(L[mp[pos]]);
u[mp[pos]]^=;
}
an[b[i].id]=sum;
}
for(i=;i<=numb;i++)printf("%lld\n",an[i]);
}

[51nod Round15 E ]Danganronpa的更多相关文章

  1. 【51Nod 1244】莫比乌斯函数之和

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1244 模板题... 杜教筛和基于质因子分解的筛法都写了一下模板. 杜教筛 ...

  2. 51Nod 1268 和为K的组合

    51Nod  1268  和为K的组合 1268 和为K的组合 基准时间限制:1 秒 空间限制:131072 KB 分值: 20 难度:3级算法题 给出N个正整数组成的数组A,求能否从中选出若干个,使 ...

  3. 51Nod 1428 活动安排问题

    51Nod   1428  活动安排问题 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1428 1428 活 ...

  4. 51Nod 1278 相离的圆

    51Nod 1278 相离的圆 Link: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1278 1278 相离的圆 基 ...

  5. 51nod算法马拉松15

    智力彻底没有了...看来再也拿不到奖金了QAQ... A B君的游戏 因为数据是9B1L,所以我们可以hash试一下数据... #include<cstdio> #include<c ...

  6. 【51Nod 1501】【算法马拉松 19D】石头剪刀布威力加强版

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1501 dp求出环状不连续的前缀和,剩下东西都可以算出来,比较繁琐. 时间 ...

  7. 【51Nod 1622】【算法马拉松 19C】集合对

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1622 简单题..直接暴力快速幂 #include<cstdio&g ...

  8. 【51Nod 1616】【算法马拉松 19B】最小集合

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1616 这道题主要是查询一个数是不是原有集合的一个子集的所有数的gcd. ...

  9. 【51Nod 1674】【算法马拉松 19A】区间的价值 V2

    http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1674 对区间分治,统计\([l,r]\)中经过mid的区间的答案. 我的 ...

随机推荐

  1. 在 ReactNative 的 App 中,集成 Bugly 你会遇到的一些坑

    一.前言 最近开新项目,准备尝试一下 ReactNative,所以前期做了一些调研工作,ReactNative 的优点非常的明显,可以做到跨平台,除了少部分 UI 效果可能需要对不同的平台进行单独适配 ...

  2. windos10安装mongodb并配置

    想了想还是把这个写上吧,毕竟网上的教程有不少坑的. 首先下载mongodb,如果你嫌官网慢,那么你可以去我的百度云下载 链接:http://pan.baidu.com/s/1pKEWTBX 密码:v3 ...

  3. iOS常见的几种加密方法(base64.MD5.Token传值.系统指纹验证。。加密)

    普通加密方法是讲密码进行加密后保存到用户偏好设置中 钥匙串是以明文形式保存,但是不知道存放的具体位置 一. base64加密 base64 编码是现代密码学的基础 基本原理: 原本是 8个bit 一组 ...

  4. Fiori缓存与它的清除

    最近在修改已有的Fiori应用,遇到了缓存上的一点问题,导致对Fiori应用的代码修改不能在前端页面生效.现将自己查到的一篇好资料翻译过来,以供参考.以下为正文. 2017.12.19更新:最近又遇到 ...

  5. SQL Server 修改AlwaysOn共享网络位置

    标签:MSSQL/故障转移 概述 很多人一开始搭建Alwayson的时候对于共享网络位置的选择不是很重视, 导致后面需要去修改这个路径.但是怎样修改这个路径呢?貌似没有给出具体的修改选项,但是还是有地 ...

  6. String源码图

    String StringBuffer StringBuilder 均为对字符数组的操作. 实现了不同的接口,导致不同的覆写. 实现了同样的接口,适应不同的场景.

  7. Linux下防火墙配置

    查看防火墙的状态:/etc/init.d/iptables  status  或  service  iptables  status 1) 临时生效,重启后复原 开启: service  iptab ...

  8. [编织消息框架][JAVA核心技术]动态代理应用12-总结

    动态代理这篇比较长,是框架组成的重要基础 回顾下学到的应用技术 1.异常应用 2.annotation技术 3.数值与逻辑分享 4.jdk.cglib.javassist等动态代理技术 5.懒处理.预 ...

  9. pycharm2017.3专业版激活注册码

    pycharm作为一个不错的python编程的ide很有用处 这里拔出一段专业版的注册码,社区版用起来确实着实让人着急. 2017-12-1921:40:38 EB101IWSWD-eyJsaWNlb ...

  10. Head First设计模式之桥接模式

    一.定义 桥接模式(Bridge Pattern),将抽象部分与它的实现部分分离,使的抽象和实现都可以独立地变化. 主要解决:在多维可能会变化的情况下,用继承会造成类爆炸问题,扩展起来不灵活. 何时使 ...