Sicily 1732 Alice and Bob (二进制最大公约数)
Constraints
Time Limit: 1 secs, Memory Limit: 32 MB
Description:
Alice is a beautiful and clever girl. Bob would like to play with Alice.
One day, Alice got a very big rectangle and wanted to divide it into small square pieces. Now comes a problem: if all pieces of small squares are of the same size, how big could the squares be? To Alice, it’s easy to solve the problem.
 However, she was very busy, so she asked Bob to help her. You know Alice is such a lovely girl and of course Bob won’t refuse her request. But Bob is not so smart and he is especially weak in math. So he turns to you—a genius at programming.
Alice will inform Bob the length and width of the big rectangle, and Bob have to tell her the longest length for the small square. All of these numbers are in their binary representations.
Input:
The first line of the input is a positive integer. This is the number of the test cases followed. Each test case contains two integer L and W in their binary representation which tells you the length and width of the very big rectangle
 (0<L, W<2^1000). There may be one or several spaces between these integers.
Output:
The output of the program should consist of one line of output for each test case. The output of each test case only contains the longest length for the small squares in its binary representation. No any redundant spaces are needed.
Sample Input:
2
100 1000
100 110
Sample Output:
100
10
分析:本题的大意就是给出两个数的二进制。求出他们的最大公约数,要用辗转相除法,因为本题的数据范围较大,须要使用高精度,假设简单套用使用辗转相除法gcd(n, m) = gcd(m, n%m)来求的话,那么就要完毕一个高精度的除法的程序;
由于本题的输入和输出都使用二进制表示。所以能够使用下面方法来求最大公约数,(仅仅须要用高精度的除法和以为运算);
本题採用的算法例如以下:
if a = 2p, b = 2q, then gcd(a, b) = 2*gcd(p, q);
if a = 2p, b = 2q+1, then gcd(a, b) = gcd(p, b);
if a = 2p+1, b = 2q, then gcd(a, b) = gcd(a, q);
if a = 2p+1, b = 2q+1, then gcd(a, b) = gcd(a-b, b) (assume a > b)
容易看出前三种情况都会导致当中一个整数减半,这样递减的速度是非常快的,并且因为输入的是以二进制的方式输入,推断a, b的方式非常easy;
那会不会连续调用第四种情况呢?答案是不会的。原因是:
当a = 2p+1, b = 2q+1时:
gcd(a, b) = gcd(a-b, b) = gcd(2(p-q), 2q+1) = gcd(p-q, 2q+1);
明显不可能出现连续调用第四种情况,时间复杂度也和标准的转转相除法一样是O(logn);
代码例如以下:
// Problem#: 1732
// Submission#: 2822044
// The source code is licensed under Creative Commons Attribution-NonCommercial-ShareAlike 3.0 Unported License
// All Copyright reserved by Informatic Lab of Sun Yat-sen University
#include <iostream>
#include <cstdio>
#include <cstring>
#include <cstdlib>
#define MAXN 10005
#define RST(N)memset(N, 0, sizeof(N))
using namespace std; typedef struct Node_
{
int len;
int v[MAXN];
}Node; Node n, m;
int cas;
char str1[MAXN], str2[MAXN]; Node Tr(char *str) //把字符串转换成数字形式;
{
Node N;
int len = strlen(str);
N.len = len;
for(int i=0; i<len; i++) N.v[i] = str[len-1-i]-'0';
return N;
} bool CMP(Node n, Node m) //比較两个数的大小;
{
if(n.len < m.len) return true;
if(n.len > m.len) return false;
for(int i=n.len-1; i>=0; i--) {
if(n.v[i] < m.v[i]) return true;
else if(n.v[i] > m.v[i]) return false;
}
return false;
} Node Minus(Node n, Node m) //大整数高精度相减。注意是二进制相减;
{
Node N = n;
int borrow = 0, temp, i; //borrow为借位;
for(i=0; i<m.len; i++) { //从低位减起;
temp = N.v[i] - borrow - m.v[i];
if(temp >= 0) { //没有借位。
borrow = 0, N.v[i] = temp;
}else {
borrow = 1, N.v[i] = temp + 2;
}
}
for(; i<n.len; i++) { //处理剩余位数;(如果n > m)
temp = N.v[i] - borrow;
if(temp >= 0) {
borrow = 0, N.v[i] = temp;
}else {
borrow = 1, N.v[i] = temp + 2;
}
}
while(N.len >= 1 && !N.v[N.len-1]) N.len--;
return N;
} Node div(Node n) //大整数除2;因为是二进制,其本质就是移位;
{
Node ret;
ret.len = n.len-1;
for(int i=0; i<ret.len; i++) ret.v[i] = n.v[i+1];
return ret;
} void gcd(Node n, Node m) //求大整数的公约数;
{
long cnt = 0;
while(n.len && m.len) {
if(n.v[0]) {
if(m.v[0]) { //a = 2p+1, b = 2q+1 情况
if(CMP(n, m)) m = Minus(m, n);
else n = Minus(n, m);
}else m = div(m); //a = 2p+1, b = 2q情况;
}else {
if(m.v[0]) n = div(n); //a = 2p, b = 2q+1情况。
else {
n = div(n), m = div(m); //a = 2p, b = 2q情况。
cnt++;
}
}
}
if(m.len) for(int i=m.len-1; i>=0; i--) printf("%d", m.v[i]); //输出结果;
else for(int i=n.len-1; i>=0; i--) printf("%d", n.v[i]);
while(cnt--) printf("0");
printf("\n");
} int main()
{
scanf("%d", &cas);
while(cas--) {
scanf("%s %s", str1, str2);
n = Tr(str1), m = Tr(str2);
gcd(n, m);
}
return 0;
}
版权声明:本文博主原创文章,博客,未经同意不得转载。
Sicily 1732 Alice and Bob (二进制最大公约数)的更多相关文章
- CodeForces 346A Alice and Bob (数学最大公约数)
		
题意:有一堆数,然后有两个人轮流从中取出两个数,这两个数的差的绝对值不在这个集合,然后把这个数放进这个集合,如果哪个人不能拿了,就是输了,问你谁赢. 析:当时连题意都没看好,以为拿出两个数,就不放回了 ...
 - SDUT  2608  Alice and Bob (巧妙的二进制)
		
Alice and Bob Time Limit: 1000ms Memory limit: 65536K 有疑问?点这里^_^ 题目描述 Alice and Bob like playing ...
 - Alice and Bob(2013年山东省第四届ACM大学生程序设计竞赛)
		
Alice and Bob Time Limit: 1000ms Memory limit: 65536K 题目描述 Alice and Bob like playing games very m ...
 - sdutoj 2608 Alice and Bob
		
http://acm.sdut.edu.cn/sdutoj/problem.php?action=showproblem&problemid=2608 Alice and Bob Time L ...
 - 位运算 2013年山东省赛 F Alice and Bob
		
题目传送门 /* 题意: 求(a0*x^(2^0)+1) * (a1 * x^(2^1)+1)*.......*(an-1 * x^(2^(n-1))+1) 式子中,x的p次方的系数 二进制位运算:p ...
 - 2013年山东省第四届ACM大学生程序设计竞赛 Alice and Bob
		
Alice and Bob Time Limit: 1000ms Memory limit: 65536K 题目描述 Alice and Bob like playing games very ...
 - ny788 又见Alice and Bob
		
又见Alice and Bob 时间限制:1000 ms | 内存限制:65535 KB 难度:3 描述 集训生活如此乏味,于是Alice和Bob发明了一个新游戏.规则如下:首先,他们得到一个 ...
 - 2013年山东省第四届ACM大学生程序设计竞赛E题:Alice and Bob
		
题目描述 Alice and Bob like playing games very much.Today, they introduce a new game. There is a polynom ...
 - 2016中国大学生程序设计竞赛 - 网络选拔赛 J. Alice and Bob
		
Alice and Bob Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 131072/131072 K (Java/Others) ...
 
随机推荐
- spring 配置属性的详细信息
			
摘要(这篇文章讲的红,蓝说这话节) 字面值 字面值:可用字符串表示的值,能够通过<value>元素标签或value属性进行注入 基本数据类型及其封装类.String等类型都能够採取字面值注 ...
 - SQL Server 2008 新增T-SQL 简写语法
			
1.定义变量时可以直接赋值 DECLARE @Id int = 5 2.Insert 语句可以一次插入多行数据 INSERT INTO StateList VALUES(@Id, 'WA'), (@I ...
 - 图表引擎AChartEngine 二
			
这几天项目涉及到android图表绘制,网上找的Demo都是大同小异,也就如上篇博文所写的一样是基本函数的实现.可是所有能找到的Demo都和设计图不符.木有办法,Leader发话啦,万不得已的情况下不 ...
 - jQuery -> bind / live / delegate 终结者 - on
			
最近的一项研究jQuery.利用获得的最新版本1.11.1. 据该书打下面的代码示例,,反正也发现跑不起来. html <div class="container"> ...
 - c++日历v1.12版
			
////////////////////////////新增信息修改功能,未完善. #include<iostream> #include <string> #include& ...
 - c#里listview里如何获取点击的是哪一列
			
很多时候c#里会用到listview,又会给它添加很多的列,可以设置点击列的标头实现按照这列的内容排序等功能,然而点击不同列排序的方法是不一样的,这时候就需要知道,我到底是点击了哪一列,比如点击名字列 ...
 - NSIS 自定义页面制作关闭功能
			
因工作需要要自定义NSIS的安装页面,其中用到一个功能. 修改的是这个项目:https://github.com/nicecai/nsissource http://hamletsoft.com/ 在 ...
 - linux 使用外部设备的(光盘) 安装和更新库
			
1. 安装光盘(文件夹不存在,创建) mount -t auto /dev/cdrom /mnt/cdrom 2. 更改索引文件,指定读取本地文件 vi /etc/yum.repos.d/CentOS ...
 - 【MySQL案件】ERROR 1418
			
1.1.1. ERROR 1418 [环境的叙述性说明] mysql5.0.67 [问题叙述性说明] 当它来到创建存储过程ERROR 1418一个错误. # 创建函数SQL声明 CREATE FUNC ...
 - Android 墙纸设置代码 详细说明
			
使游戏图像列表.思考添加壁纸功能.我发了一些资料. 1 别忘记在ApplicationManifest.xml 中加上权限的设置. <uses-permission android:name = ...