树上第k小,可持久化线段树+倍增lca
给定一颗树,树的每个结点都有权值,
有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少。
每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树
c[root] 表示根为root的子树添加了多少个结点。
那么c[lson[u]] + c[lson[v]] - c[lson[lca(u,v)]] - c[lson[fa[lca(u,v)]]] >=k ,那么说明左子树添加了k个以上的结点,说明第k小的值在左子树
否则就在右子树。
//
// main.cpp
// 函数式线段树
//
// Created by whoami on 15/9/21.
// Copyright (c) 2015年 whoami. All rights reserved.
// #include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
const int N = + ;
const int M = ;
int t[N],lson[N],rson[N],c[N],total;
int a[M],b[M];
int n,m,q;
int head[M],nxt[M],to[M],e;
int dfs_clock,iid[M];
int fa[M][],depth[M];
void addEdge(int u, int v){
to[e] = v;
nxt[e] = head[u];
head[u] = e++;
} //离散化,离散化后有多少个点,线段树的区间就是多大
void initHash(){
sort(b+,b+n+);
m = unique(b+,b+n+) - b - ;
}
int hs(int x){
return lower_bound(b+,b+m+,x)-b;
} int build(int l, int r){
int root = total++;
c[root] = ;
if(l!=r){
int mid = (l+r)>>;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
}
int update(int root, int pos, int val){
int newRoot = total++,tmp = newRoot;
c[newRoot] = c[root] + val;
int l =, r = m;
while(l<r){
int mid = (l+r)>>;
if(pos<=mid){
r = mid;
lson[newRoot] = total++;
rson[newRoot] = rson[root];
newRoot = lson[newRoot];
root = lson[root];
}
else{
l = mid + ;
lson[newRoot] = lson[root];
rson[newRoot] = total++;
newRoot = rson[newRoot];
root = rson[root];
}
c[newRoot] = c[root] + val;
}
return tmp;
}
void dfs(int u, int f, int dep){
fa[u][] = f;
depth[u] = dep; for(int i=head[u]; i+;i=nxt[i]){
int v = to[i];
if(v==f)continue;
t[++dfs_clock] = update(iid[u],hs(a[v]),);
iid[v] = t[dfs_clock];
dfs(v,u,dep+);
}
} int query(int urt, int vrt, int lcart, int frt, int k){
int l = , r = m;
//当l==r,即区间的长度只有1时,那么该区间所对应的值就是第k小了
while(l<r){
int mid = (l+r)>>;
if(c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]]>=k){
r = mid;
urt = lson[urt];
vrt = lson[vrt];
frt = lson[frt];
lcart = lson[lcart];
}
else
{
l = mid+;
k -= c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]];
urt = rson[urt];
vrt = rson[vrt];
frt = rson[frt];
lcart = rson[lcart];
}
}
return l;
}
void init() {
for(int k=;k+<; ++k){
for(int v = ;v<=n;++v){
if(fa[v][k]<)
fa[v][k+] = -;
else
fa[v][k+] = fa[fa[v][k]][k];
}
}
} int lca(int u, int v){
if(depth[u] < depth[v])
swap(u,v); int tmp = depth[u] - depth[v];
for(int i=;i>=;--i)
if(tmp &(<<i))
u = fa[u][i];
if(u==v) return u;
for(int i=;i>=;--i){
if(fa[u][i]!=fa[v][i]){
u = fa[u][i];
v = fa[v][i];
}
}
return fa[u][]; }
int main(int argc, const char * argv[]) {
int u,v,k;
while(scanf("%d%d",&n,&q)!=EOF){
total = dfs_clock = ;
for(int i=;i<=n;++i){
scanf("%d",&a[i]);
b[i] = a[i];
}
memset(head,-,sizeof(head));
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
addEdge(,);
addEdge(,);
initHash();
iid[] = t[] = build(,m);
memset(fa,-,sizeof(fa));
dfs(,,); init();
while(q--){
scanf("%d%d%d",&u,&v,&k);
int lc = lca(u,v);
int f = fa[lc][];
printf("%d\n",b[query(iid[u],iid[v],iid[lc],iid[f],k)]);
}
} return ;
}
树上第k小,可持久化线段树+倍增lca的更多相关文章
- POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)
可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总 ...
- 区间第K小——可持久化线段树模板
概念 可持久化线段树又叫主席树,之所以叫主席树是因为这东西是fotile主席创建出来的. 可持久化数据结构思想,就是保留整个操作的历史,即,对一个线段树进行操作之后,保留访问操作前的线段树的能力. 最 ...
- 序列内第k小查询(线段树)
最近请教了一下大佬怎么求序列内第k大查询,自己又捣鼓了一下,虽然还没有懂得区间第k大查询,不过姑且做一个记录先吧 因为每个元素大小可能很大而元素之间不连续,所以我们先离散化处理一下,程序中的ori[ ...
- HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)
Kth number Time Limit: 15000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total ...
- SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)
题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...
- 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)
Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...
- 【可持久化线段树】POJ2104 查询区间第k小值
K-th Number Time Limit: 20000MS Memory Limit: 65536K Total Submissions: 61284 Accepted: 21504 Ca ...
- [TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]
按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm ...
- BZOJ 2588: Spoj 10628. Count on a tree-可持久化线段树+LCA(点权)(树上的操作) 无语(为什么我的LCA的板子不对)
2588: Spoj 10628. Count on a tree Time Limit: 12 Sec Memory Limit: 128 MBSubmit: 9280 Solved: 2421 ...
随机推荐
- QMediaPlayer的duration问题
遇到了一个坑QMediaPlayer::duration的坑. 这个坑是当你setMedia之后, 直接使用duration获取播放时长会得到0, 出错时候的代码片段例如以下: void MainWi ...
- Linux 高性能server编程——高级I/O函数
重定向dup和dup2函数 #include <unistd.h> int dup(int file_descriptor); int dup2(int file_descriptor_o ...
- SAP自带的创建报表工具
SAP自带的工具有quickview和query两个主要的工具,当然还有其他的 quickview和query的区别主要是query支持系统之间的传输,quickview只能是用户的客户端创建使用,不 ...
- centos6安装bt工具transmission
centos6 install transmission 1. 安装所需的组件: yum -y install gcc gcc-c++ m4 make automake libtool gettex ...
- 链栈之C++实现
链栈是借用单链表实现的栈.其不同于顺序栈之处在于: 1.链栈的空间是程序运行期间根据需要动态分配的,机器内存是它的上限.而顺序栈则是 静态分配内存的. 2.链栈动态分配内存的特性使得它一般无需考虑栈溢 ...
- 最短路知识点总结(Dijkstra,Floyd,SPFA,Bellman-Ford)
Dijkstra算法: 解决的问题: 带权重的有向图上单源最短路径问题.且权重都为非负值.如果采用的实现方法合适,Dijkstra运行时间要低于Bellman-Ford算法. 思路: 如果存在一条从i ...
- extern 使用方法具体解释
在C语言中,修饰符extern用在变量或者函数的声明前,用来说明"此变量/函数是在别处定义的.要在此处引用".(extern能够置于变量或者函数前,以标示变量或者函数的定义在别的文 ...
- [ACM] hdu 4405 Aeroplane chess (概率DP)
Aeroplane chess Problem Description Hzz loves aeroplane chess very much. The chess map contains N+1 ...
- Java程序员须知的七个日志管理工具(转)
Splunk vs. Sumo Logic vs. LogStash vs. GrayLog vs. Loggly vs. PaperTrails vs. Splunk>Storm 英文原文:T ...
- A Game of Thrones(17) - Bran
It seemed as though he had been falling for years. Fly, a voice whispered in the darkness, but Bran ...