给定一颗树,树的每个结点都有权值,

有q个询问,每个询问是 u v k ,表示u到v路径上第k小的权值是多少。

每个结点所表示的线段树,是父亲结点的线段树添加该结点的权值之后形成的新的线段树

c[root] 表示根为root的子树添加了多少个结点。

那么c[lson[u]] + c[lson[v]] - c[lson[lca(u,v)]] - c[lson[fa[lca(u,v)]]]  >=k ,那么说明左子树添加了k个以上的结点,说明第k小的值在左子树

否则就在右子树。

 //
// main.cpp
// 函数式线段树
//
// Created by whoami on 15/9/21.
// Copyright (c) 2015年 whoami. All rights reserved.
// #include <iostream>
#include <algorithm>
#include <stdio.h>
#include <string.h>
using namespace std;
const int N = + ;
const int M = ;
int t[N],lson[N],rson[N],c[N],total;
int a[M],b[M];
int n,m,q;
int head[M],nxt[M],to[M],e;
int dfs_clock,iid[M];
int fa[M][],depth[M];
void addEdge(int u, int v){
to[e] = v;
nxt[e] = head[u];
head[u] = e++;
} //离散化,离散化后有多少个点,线段树的区间就是多大
void initHash(){
sort(b+,b+n+);
m = unique(b+,b+n+) - b - ;
}
int hs(int x){
return lower_bound(b+,b+m+,x)-b;
} int build(int l, int r){
int root = total++;
c[root] = ;
if(l!=r){
int mid = (l+r)>>;
lson[root] = build(l,mid);
rson[root] = build(mid+,r);
}
return root;
}
int update(int root, int pos, int val){
int newRoot = total++,tmp = newRoot;
c[newRoot] = c[root] + val;
int l =, r = m;
while(l<r){
int mid = (l+r)>>;
if(pos<=mid){
r = mid;
lson[newRoot] = total++;
rson[newRoot] = rson[root];
newRoot = lson[newRoot];
root = lson[root];
}
else{
l = mid + ;
lson[newRoot] = lson[root];
rson[newRoot] = total++;
newRoot = rson[newRoot];
root = rson[root];
}
c[newRoot] = c[root] + val;
}
return tmp;
}
void dfs(int u, int f, int dep){
fa[u][] = f;
depth[u] = dep; for(int i=head[u]; i+;i=nxt[i]){
int v = to[i];
if(v==f)continue;
t[++dfs_clock] = update(iid[u],hs(a[v]),);
iid[v] = t[dfs_clock];
dfs(v,u,dep+);
}
} int query(int urt, int vrt, int lcart, int frt, int k){
int l = , r = m;
//当l==r,即区间的长度只有1时,那么该区间所对应的值就是第k小了
while(l<r){
int mid = (l+r)>>;
if(c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]]>=k){
r = mid;
urt = lson[urt];
vrt = lson[vrt];
frt = lson[frt];
lcart = lson[lcart];
}
else
{
l = mid+;
k -= c[lson[urt]] + c[lson[vrt]] - c[lson[frt]]-c[lson[lcart]];
urt = rson[urt];
vrt = rson[vrt];
frt = rson[frt];
lcart = rson[lcart];
}
}
return l;
}
void init() {
for(int k=;k+<; ++k){
for(int v = ;v<=n;++v){
if(fa[v][k]<)
fa[v][k+] = -;
else
fa[v][k+] = fa[fa[v][k]][k];
}
}
} int lca(int u, int v){
if(depth[u] < depth[v])
swap(u,v); int tmp = depth[u] - depth[v];
for(int i=;i>=;--i)
if(tmp &(<<i))
u = fa[u][i];
if(u==v) return u;
for(int i=;i>=;--i){
if(fa[u][i]!=fa[v][i]){
u = fa[u][i];
v = fa[v][i];
}
}
return fa[u][]; }
int main(int argc, const char * argv[]) {
int u,v,k;
while(scanf("%d%d",&n,&q)!=EOF){
total = dfs_clock = ;
for(int i=;i<=n;++i){
scanf("%d",&a[i]);
b[i] = a[i];
}
memset(head,-,sizeof(head));
for(int i=;i<n;++i){
scanf("%d%d",&u,&v);
addEdge(u,v);
addEdge(v,u);
}
addEdge(,);
addEdge(,);
initHash();
iid[] = t[] = build(,m);
memset(fa,-,sizeof(fa));
dfs(,,); init();
while(q--){
scanf("%d%d%d",&u,&v,&k);
int lc = lca(u,v);
int f = fa[lc][];
printf("%d\n",b[query(iid[u],iid[v],iid[lc],iid[f],k)]);
}
} return ;
}

树上第k小,可持久化线段树+倍增lca的更多相关文章

  1. POJ- 2104 hdu 2665 (区间第k小 可持久化线段树)

    可持久化线段树 也叫函数式线段树也叫主席树,其主要思想是充分利用历史信息,共用空间 http://blog.sina.com.cn/s/blog_4a0c4e5d0101c8fr.html 这个博客总 ...

  2. 区间第K小——可持久化线段树模板

    概念 可持久化线段树又叫主席树,之所以叫主席树是因为这东西是fotile主席创建出来的. 可持久化数据结构思想,就是保留整个操作的历史,即,对一个线段树进行操作之后,保留访问操作前的线段树的能力. 最 ...

  3. 序列内第k小查询(线段树)

    最近请教了一下大佬怎么求序列内第k大查询,自己又捣鼓了一下,虽然还没有懂得区间第k大查询,不过姑且做一个记录先吧 因为每个元素大小可能很大而元素之间不连续,所以我们先离散化处理一下,程序中的ori[ ...

  4. HDU 2665.Kth number-可持久化线段树(无修改区间第K小)模板 (POJ 2104.K-th Number 、洛谷 P3834 【模板】可持久化线段树 1(主席树)只是输入格式不一样,其他几乎都一样的)

    Kth number Time Limit: 15000/5000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total ...

  5. SPOJ-COT-Count on a tree(树上路径第K小,可持久化线段树)

    题意: 求树上A,B两点路径上第K小的数 分析: 同样是可持久化线段树,只是这一次我们用它来维护树上的信息. 我们之前已经知道,可持久化线段树实际上是维护的一个前缀和,而前缀和不一定要出现在一个线性表 ...

  6. 计蒜客 38229.Distance on the tree-1.树链剖分(边权)+可持久化线段树(区间小于等于k的数的个数)+离散化+离线处理 or 2.树上第k大(主席树)+二分+离散化+在线查询 (The Preliminary Contest for ICPC China Nanchang National Invitational 南昌邀请赛网络赛)

    Distance on the tree DSM(Data Structure Master) once learned about tree when he was preparing for NO ...

  7. 【可持久化线段树】POJ2104 查询区间第k小值

    K-th Number Time Limit: 20000MS   Memory Limit: 65536K Total Submissions: 61284   Accepted: 21504 Ca ...

  8. [TS-A1505] [清橙2013中国国家集训队第二次作业] 树 [可持久化线段树,求树上路径第k大]

    按Dfs序逐个插入点,建立可持久化线段树,每次查询即可,具体详见代码. 不知道为什么,代码慢的要死,, #include <iostream> #include <algorithm ...

  9. BZOJ 2588: Spoj 10628. Count on a tree-可持久化线段树+LCA(点权)(树上的操作) 无语(为什么我的LCA的板子不对)

    2588: Spoj 10628. Count on a tree Time Limit: 12 Sec  Memory Limit: 128 MBSubmit: 9280  Solved: 2421 ...

随机推荐

  1. 【Unity 3D】学习笔记三十九:控制组件

    控制组件 角色控制组件和刚体组件都具备物理引擎的功能,须要绑定游戏对象才干实现对应的物理效果,而且同一个游戏对象中两者仅仅能存在一个,不能共存.刚体组件能够很精确的模拟现实世界中的一切物理效果,而角色 ...

  2. poj1011Sticks

    传说中的poj必做50题之中的一个-- 这是个传说中的搜索, 一開始以为, 仅仅要棒子加起来等于如果的原始长度, 那么这几根选择的棒子就不用管了, 结果卡在第一个例子-- 看了一下,发现, 代码把1, ...

  3. ASP.NET - 获得客户端的 IP 地址

    通常我们都通过下面的代码获得IP: REMOTE_ADDR 说明:访问客户端的 IP 地址. 此项信息用户不可以修改.如果真的给改了的话,你也和服务器连接不了了,服务器就是按照这个来与客户端建立连接并 ...

  4. 积累的VC编程小技巧之树操作

    1.如何在TreeList中加图标? [问题提出]  请问treeview控件和treectrl控件的用法有何不同呢?向如何imagelist控件中加图象呀?  [解决方法]  1)    HICON ...

  5. jquery的ajax提交form表单方式总结

    方法一: function AddHandlingFeeToRefund() { var AjaxURL= "../OrderManagement/AjaxModifyOrderServic ...

  6. AJAX入门---DOM操作HTML

    AJAX入门---DOM操作HTML 一边学习AJAX一边坐着总结加深印象.上次写的是怎样简单的使用XMLHttpRequest对象.今天写的是DOM(文档对象模型(Document Object M ...

  7. 轻松学会多线程(四)——synchronized同步keyword知多少

    每个对象都有一把独占锁. 独占锁仅仅限制线程对它的同步方法的訪问,对非同步方法,独占锁没有意义. synchronizedkeyword能够作为函数的修饰符,也能够作为函数内的语句,也就是平时说的同步 ...

  8. flex网上办(苹果)桌面系统仿真

    1.有登录界面 2.能够载入app(每一个app是单独的swf),并可拖动app的图标互相叠加 3.桌面上显示的哪些APP与目录是依据登陆的用户信息.从webservice中读取的(名字.图标信息等) ...

  9. [Windows Phone]AnimationHelper管理分散的Storyboard

    问题描述: 在Windows Phone开发时候,可能存在这样的问题: 某一个控件需要一个特定的展现(这里假定是一个特定动画),那么我们会这么解决这个问题呢? 打开Blend,根据需求需求给控件添加动 ...

  10. oracle乱码问题

    oracle乱码问题通常是因为oracle字符集设置和操作系统字符集设置不一致造成的,这里不得不提到两个操作系统环境变量,LANG和NLS_LANG LANG是针对Linux系统的语言.地区.字符集的 ...