题目大意:给出n个数字a[],将a[]分解为质因子(保证分解所得的质因子不大于2000),任选一个或多个质因子,使其乘积为完全平方数。求其方法数。

学长学姐们比赛时做的,当时我一脸懵逼的不会搞……所以第二天上午花了一上午学习了一下线性代数。

题目思路:

任选一个或多个质因子,起乘积为完全数m,因为组成它的均为素数,假设组成m的素数的种类为n,那么这n类素数中每类素数的个数应为偶数。

可设:a[i][j]=0代表第i种素数可在a[j]中分离出的个数为偶数,a[i][j]=1代表第i种素数可在a[j]中分离出的个数为奇数数。

          b[i]=1代表选择这类素数,b[i]=0代表不选择这类素数。

列出线性方程组:

a11x1+a12x2+...+a1nxn=0

a21x1+a22x2+...+a2nxn=0

...

an1x1+an2x2+...+annxn=0

求解的个数 ans

转化为矩阵形式:

矩阵A=

a11 a12 a13 …………a1n

a21 a22 a23 …………a2n

……………………………………

……………………………………

an1 an2 an3 …………ann

通过初等变换可将矩阵A换成类似下面矩阵B的形式

a11 a12 a13 ……a1n

0     a22 a23 ……a2n

0       0    a33……a3n

0       0    0    ……arn

再将矩阵B转化成线性方程组 可求出最后一组方程的解,倒着往回求可求出所有方程解

可解出的方程组共 r 个,由秩的定义可知 r等矩阵A的秩

由定理:

对于n元齐次线性方程组如果r<n,则方程组含n-r个自由未知量。

解的个数ans=2^(n-r)-1(减去全0解)

具体操作:

#include<cstdio>
#include<stdio.h>
#include<cstdlib>
#include<cmath>
#include<iostream>
#include<algorithm>
#include<cstring>
#include<vector>
#include<queue>
#define INF 0x3f3f3f
#define MAX 2105
#define MOD 1000000007 using namespace std; long long c[MAX][],p[MAX],v[MAX],a[MAX],cnt,n;//c存矩阵,p存素数表,cnt代表素数的个数 void MakeTab()//打素数表
{
int i,j;
memset(v,,sizeof(v));
memset(p,,sizeof(p));
cnt=;
for(i=; i<=; i++)
{
if(!v[i])
{
p[++cnt]=i;
for(j=i; j<=; j+=i)
{
v[j]=;
}
}
}
} int Rank()//计算秩
{
int i,j,k,r,u;
i=;
j=;
while(i<=cnt && j<=n)
{
r=i;
while(!c[r][j] && r<=cnt)
r++;
if(c[r][j])
{
swap(c[i],c[r]);//如果发现了第r行第j列为1,就讲r行和i行行互换(初等行变换)
for(u=i+; u<=cnt; u++)
{
if(c[u][j])
{
for(k=i; k<=n; k++)
{
c[u][k]=c[u][k]^c[i][k];//每找到一个未知数就对其进行亦或处理,去掉系数c[i][k]
} }
}
i++;
}
j++;
}
return i;
} int main()
{
MakeTab();
int i,j,cns=,T;
scanf("%d",&T);
while(T--)
{
scanf("%lld",&n);
memset(c,,sizeof(c));
for(i=; i<=n; i++)
{
scanf("%lld",&a[i]);
} for(i=; i<=n; i++)
{
for(j=; j<=cnt; j++)
{
long long num=a[i];
if(num%p[j]==)
{
while(num%p[j]==)
{
num/=p[j];
c[j][i]=c[j][i]^;
}
}
}
} long long k=(n-Rank());
long long ans=;
for(i=; i<=k; i++)
ans=(ans*)%MOD;
printf("Case #%d:\n",cns++);
printf("%lld\n",ans-);//去掉全0的解
}
return ;
}

【HDU 5833】Zhu and 772002(异或方程组高斯消元讲解)的更多相关文章

  1. hdu 5833 Zhu and 772002 异或方程组高斯消元

    ccpc网赛卡住的一道题 蓝书上的原题 但是当时没看过蓝书 今天又找出来看看 其实也不是特别懂 但比以前是了解了一点了 主要还是要想到构造异或方程组 异或方程组的消元只需要xor就好搞了 数学真的是硬 ...

  2. 【HDU 5833】Zhu and 772002(异或方程组高斯消元)

    300个最大质因数小于2000的数,选若干个它们的乘积为完全平方数有多少种方案. 合法方案的每个数的质因数的个数的奇偶值异或起来为0. 比如12=2^2*3,对应的奇偶值为01(2的个数是偶数为0,3 ...

  3. 3364 Lanterns (异或方程组高斯消元)

    基本思路.首先构造一个n*(m+1)的矩阵,同时标记一个行数row,row从零开始,然后找出每一列第一个非零的数,和第row行互换, 然后对row到n行,异或运算.最终的结果为2^(m-row) #i ...

  4. hdu 5833 Zhu and 772002 ccpc网络赛 高斯消元法

    传送门:hdu 5833 Zhu and 772002 题意:给n个数,每个数的素数因子不大于2000,让你从其中选则大于等于1个数相乘之后的结果为完全平方数 思路: 小于等于2000的素数一共也只有 ...

  5. HDU 5833 Zhu and 772002

    HDU 5833 Zhu and 772002 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/ ...

  6. HDU 5833 Zhu and 772002 (高斯消元)

    Zhu and 772002 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5833 Description Zhu and 772002 are b ...

  7. hdu 5833 Zhu and 772002 高斯消元

    Zhu and 772002 Problem Description Zhu and 772002 are both good at math. One day, Zhu wants to test ...

  8. HDU 2262 Where is the canteen 期望dp+高斯消元

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=2262 Where is the canteen Time Limit: 10000/5000 MS ...

  9. 【HDU 3949】 XOR (线性基,高斯消元)

    XOR Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)Total Submiss ...

随机推荐

  1. linux 添加定时任务脚本

    主要分2个步骤第一步  编写要定时执行的脚本touch mytask.shvi mytask.sh里面写入:#! /bin/bashecho `date` >> /tmp/mytask.l ...

  2. CKEditor 案例

    官网下载: http://ckeditor.com/download 将下载的ckeditor整个文件放入项目中 在页面中引用ckeditor.js,并用新建一个<textarea>再建一 ...

  3. LeetCode OJ 11. Container With Most Water

    Given n non-negative integers a1, a2, ..., an, where each represents a point at coordinate (i, ai).  ...

  4. 希望获取到页面中所有的checkbox怎么做?

    var domList = document.getElementsByTagName(‘input’); var checkBoxList = []; var len = domList.lengt ...

  5. Java Timer及TimerTarsk(摘自网络)

    Java自带的java.util.Timer类,通过调度一个java.util.TimerTask任务. 这种方式可以让程序按照某一个频度执行,但不能指定时间运行.用的较少.任务的调用通过起的子线程进 ...

  6. tableviewcell 中使用autolayout自适应高度

    - (CGFloat)tableView:(UITableView *)tableView heightForRowAtIndexPath:(NSIndexPath *)indexPath { [ce ...

  7. 编译OpenGL代码时发生 Inconsistency detected by ld.so: dl-version.c: 224: _dl_check_map_versions: Assertion `needed != ((void *)0)' failed! 错误的解决方案

    注:本解决方案适用于使用N卡的PC 出现该错误 , 一般是由于开源的nouveau驱动和Nvidia专有驱动冲突导致的 .在解决该问题时 , 尝试过卸载 N 卡专有驱动 , 仅使用开源nouveau驱 ...

  8. 用Py2exe打包Python脚本简单介绍

    一.简述      Py2exe,从这个名字上就可以理解,把Python脚本转换为windows平台上面可以运行的可执行程序(*.exe)的工具.经过转换后,你可以不 用安装Python的执行环境就可 ...

  9. VBS 读取文本文件特殊字符前如逗号的值并赋值给变量

    我使用的仿真终端SecureCRT需要使用一个脚本,支持VBS的.我需要实现如下功能: 首先文本文件在:D:\100.txt文本文件的内容为:9 0,randy,9 1,jeff,9 2,sameul ...

  10. Java中的String[] args

    在每个java程序中都有一个方法,public static void main(String[] args)方法,这个参数看了好久没看懂,但是细细看来,还是挺简单的,所有的方法的参数都是一个道理,而 ...