Monkey and Banana

Problem Description
A group of researchers are designing an experiment to test the IQ of a monkey. They will hang a banana at the roof of a building, and at the mean time, provide the monkey with some blocks. If the monkey is clever enough,
it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.



The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height. 



They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked. 



Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
 
Input
The input file will contain one or more test cases. The first line of each test case contains an integer n,

representing the number of different blocks in the following data set. The maximum value for n is 30.

Each of the next n lines contains three integers representing the values xi, yi and zi.

Input is terminated by a value of zero (0) for n.
 
Output
For each test case, print one line containing the case number (they are numbered sequentially starting from 1) and the height of the tallest possible tower in the format "Case case: maximum height = height".
 
Sample Input
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
 
Sample Output
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
 
题意   给你n种长方体 每种都有无穷个 三条棱长为a,b,c  当一个长方体的长宽都小于还有一个时  这个长方体就能够堆在还有一个上面  求这些长方体能堆起的最大高度

每一个长方体都有6种放置方式  但仅仅有三种高度  分别为a,b,c  为了便于操坐  能够把一个长方体分为三个 每一个的高度都是唯一的  然后就能够用最长连通来求了  令d[i]表示以第i个长方体为最顶上一个时的最大高度    当第i个长方体的长和宽小于第j个的长和宽或宽和长时
第i个就能够放在第j个上面  即d[i]=max(d[i],d[j]+a[i].h)

#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 35 * 3;
int d[N], n;
struct Cube
{
int a, b, c;
Cube (int aa = 0, int bb = 0, int cc = 0) : a (aa), b (bb), c (cc) {}
} cub[N]; int dp (int i)
{
if (d[i] > 0) return d[i];
d[i] = cub[i].c;
for (int j = 1; j <= 3 * n; ++j)
if ( (cub[i].a < cub[j].a && cub[i].b < cub[j].b) || (cub[i].a < cub[j].b && cub[i].b < cub[j].a))
d[i] = max (d[i], dp (j) + cub[i].c);
return d[i];
} int main()
{
int cas = 0, ans, a, b, c;
while (scanf ("%d", &n), n)
{
memset (d, 0, sizeof (d));
for (int i = ans = 0; i < n; ++i)
{
scanf ("%d%d%d", &a, &b, &c);
cub[3 * i + 1] = Cube (a, b, c);
cub[3 * i + 2] = Cube (a, c, b);
cub[3 * i + 3] = Cube (b, c, a);
}
for (int i = 1; i <= 3 * n; ++i)
ans = max (ans, dp (i));
printf ("Case %d: maximum height = %d\n", ++cas, ans);
}
return 0;
}

HDU 1069 Monkey and Banana(DP 长方体堆放问题)的更多相关文章

  1. HDU 1069 Monkey and Banana dp 题解

    HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...

  2. HDU 1069 Monkey and Banana (DP)

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  3. HDU 1069 Monkey and Banana DP LIS变形题

    http://acm.hdu.edu.cn/showproblem.php?pid=1069 意思就是给定n种箱子,每种箱子都有无限个,每种箱子都是有三个参数(x, y, z)来确定. 你可以选任意两 ...

  4. HDU 1069 Monkey and Banana DP LIS

    http://acm.hdu.edu.cn/showproblem.php?pid=1069 题目大意 一群研究员在研究猴子的智商(T T禽兽啊,欺负猴子!!!),他们决定在房顶放一串香蕉,并且给猴子 ...

  5. HDU 1069 monkey an banana DP LIS

    Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64uDescription 一组研究人员正在 ...

  6. HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)

    HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...

  7. HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...

  8. HDU 1069—— Monkey and Banana——————【dp】

    Monkey and Banana Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u S ...

  9. HDU 1069 Monkey and Banana 基础DP

    题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...

随机推荐

  1. c#中的jQuery——HtmlAgilityPack

    原文:c#中的jQuery--HtmlAgilityPack c#中是否有javascript中的jQuery类库? jQuery在访问和操作HTML 的DOM的便捷是前端开发工程师的一种福音,在c# ...

  2. 2015年十大热门Android开源新项目

    2015年十大热门Android开源新项目 2015 即将结束,又到了大家喜闻乐见的年终盘点时刻啦,今天给大家盘点一下 2015 年 Android 开发领域新出现的 10 大热门开源项目.数据来自于 ...

  3. 【剑指offer】q34:丑数

    题目要求第n个丑数.所以对于中间结果不须要保存. def Humble(index): curHum = 1 M2 = 2; M3 = 3; M5 = 5 while index > 1: cu ...

  4. Ubuntu 8.04下安装DB2方法

    參考文献: How-to: Ubuntu 7.10 Server x86 32-bit and DB2 Express-C v9.5 DB2 v9.7 Infomation Center 场景:在IB ...

  5. Maven POM入门

    Super POM(project object model) Maven内置了一个默认的POM(不在项目中,因此不可见),每一个project都会继承自这个默认的POM,因此叫Super POM.除 ...

  6. hdu4341(分组背包)

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4341 题意:一个人在原点(0,0)抓金子,每块金子有一个获得需要的时间t和价值v.而且有的金子可能在一 ...

  7. 3p

    哈,不要自卑.爱情和婚姻可遇不可求,缘到自然成.首要的是人好,容貌別太差,毕竟天天在一起看着要舒心才好,另外应该有上进心,避免势利小人.这些,都要看机缘.所谓right person at right ...

  8. 全面剖析Redis Cluster原理和应用 (转)

    1.Redis Cluster总览 1.1 设计原则和初衷 在官方文档Cluster Spec中,作者详细介绍了Redis集群为什么要设计成现在的样子.最核心的目标有三个: 性能:这是Redis赖以生 ...

  9. hdu3652(数位dp)

    题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=3652 题意:求1~n含有13且能被13整除的数的个数. 分析:数位dp,dp数组加一维来维护到pos位 ...

  10. WPF遮蔽层的实现

    在一些项目中,难免会有耗时的加载,如果加载时没有提示,给人一种假死的感觉,很不友好,那么现在福利来啦,WPF版的模态窗体,先上效果图 实际效果指针是转动的,话不多说,一大批干货来袭 XMAL的代码 W ...