HDU 1069 Monkey and Banana(DP 长方体堆放问题)
Monkey and Banana
it shall be able to reach the banana by placing one block on the top another to build a tower and climb up to get its favorite food.
The researchers have n types of blocks, and an unlimited supply of blocks of each type. Each type-i block was a rectangular solid with linear dimensions (xi, yi, zi). A block could be reoriented so that any two of its three dimensions determined the dimensions
of the base and the other dimension was the height.
They want to make sure that the tallest tower possible by stacking blocks can reach the roof. The problem is that, in building a tower, one block could only be placed on top of another block as long as the two base dimensions of the upper block were both strictly
smaller than the corresponding base dimensions of the lower block because there has to be some space for the monkey to step on. This meant, for example, that blocks oriented to have equal-sized bases couldn't be stacked.
Your job is to write a program that determines the height of the tallest tower the monkey can build with a given set of blocks.
representing the number of different blocks in the following data set. The maximum value for n is 30.
Each of the next n lines contains three integers representing the values xi, yi and zi.
Input is terminated by a value of zero (0) for n.
1
10 20 30
2
6 8 10
5 5 5
7
1 1 1
2 2 2
3 3 3
4 4 4
5 5 5
6 6 6
7 7 7
5
31 41 59
26 53 58
97 93 23
84 62 64
33 83 27
0
Case 1: maximum height = 40
Case 2: maximum height = 21
Case 3: maximum height = 28
Case 4: maximum height = 342
每一个长方体都有6种放置方式 但仅仅有三种高度 分别为a,b,c 为了便于操坐 能够把一个长方体分为三个 每一个的高度都是唯一的 然后就能够用最长连通来求了 令d[i]表示以第i个长方体为最顶上一个时的最大高度 当第i个长方体的长和宽小于第j个的长和宽或宽和长时
第i个就能够放在第j个上面 即d[i]=max(d[i],d[j]+a[i].h)
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int N = 35 * 3;
int d[N], n;
struct Cube
{
int a, b, c;
Cube (int aa = 0, int bb = 0, int cc = 0) : a (aa), b (bb), c (cc) {}
} cub[N]; int dp (int i)
{
if (d[i] > 0) return d[i];
d[i] = cub[i].c;
for (int j = 1; j <= 3 * n; ++j)
if ( (cub[i].a < cub[j].a && cub[i].b < cub[j].b) || (cub[i].a < cub[j].b && cub[i].b < cub[j].a))
d[i] = max (d[i], dp (j) + cub[i].c);
return d[i];
} int main()
{
int cas = 0, ans, a, b, c;
while (scanf ("%d", &n), n)
{
memset (d, 0, sizeof (d));
for (int i = ans = 0; i < n; ++i)
{
scanf ("%d%d%d", &a, &b, &c);
cub[3 * i + 1] = Cube (a, b, c);
cub[3 * i + 2] = Cube (a, c, b);
cub[3 * i + 3] = Cube (b, c, a);
}
for (int i = 1; i <= 3 * n; ++i)
ans = max (ans, dp (i));
printf ("Case %d: maximum height = %d\n", ++cas, ans);
}
return 0;
}
HDU 1069 Monkey and Banana(DP 长方体堆放问题)的更多相关文章
- HDU 1069 Monkey and Banana dp 题解
HDU 1069 Monkey and Banana 纵有疾风起 题目大意 一堆科学家研究猩猩的智商,给他M种长方体,每种N个.然后,将一个香蕉挂在屋顶,让猩猩通过 叠长方体来够到香蕉. 现在给你M种 ...
- HDU 1069 Monkey and Banana (DP)
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 1069 Monkey and Banana DP LIS变形题
http://acm.hdu.edu.cn/showproblem.php?pid=1069 意思就是给定n种箱子,每种箱子都有无限个,每种箱子都是有三个参数(x, y, z)来确定. 你可以选任意两 ...
- HDU 1069 Monkey and Banana DP LIS
http://acm.hdu.edu.cn/showproblem.php?pid=1069 题目大意 一群研究员在研究猴子的智商(T T禽兽啊,欺负猴子!!!),他们决定在房顶放一串香蕉,并且给猴子 ...
- HDU 1069 monkey an banana DP LIS
Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64uDescription 一组研究人员正在 ...
- HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径)
HDU 1069 Monkey and Banana / ZOJ 1093 Monkey and Banana (最长路径) Description A group of researchers ar ...
- HDU 1069 Monkey and Banana(转换成LIS,做法很值得学习)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1069 Monkey and Banana Time Limit: 2000/1000 MS (Java ...
- HDU 1069—— Monkey and Banana——————【dp】
Monkey and Banana Time Limit:1000MS Memory Limit:32768KB 64bit IO Format:%I64d & %I64u S ...
- HDU 1069 Monkey and Banana 基础DP
题目链接:Monkey and Banana 大意:给出n种箱子的长宽高.每种不限个数.可以堆叠.询问可以达到的最高高度是多少. 要求两个箱子堆叠的时候叠加的面.上面的面的两维长度都严格小于下面的. ...
随机推荐
- 如何搭建DNS服务(转)
继NTP时间服务器后,继续搭建DNS服务,鉴于昨晚撰写时间超过预期,这次改变策略,先把自己需要用到的部分写出来(主要是基于RAC的搭建,只涉及正向和反向DNS解析),后面再添加必要的说明和阐述. 试验 ...
- 文件下载:"Content-disposition","attachment; filename=中文名>>>解决方案
文件下载时常会出现如下问题: response.setHeader("Content-disposition","attachment; filename="+ ...
- win7下硬盘安装win7+CentOS双系统方法
原文:win7下硬盘安装win7+CentOS双系统方法 LinuxCentOS安装大致介绍: win7下硬盘安装win7+CentOS双系统方法 原则: 所有的看完在装,请仔细看 一 条件: 1. ...
- 在CodeBlocks 开发环境中配置使用OpenCV (ubuntu系统)
CodeBlocks是一个开放源代码的全功能的跨平台C/C++集成开发环境.CodeBlocks由纯粹的C++语言开发完毕,它使用了蓍名的图形界面库wxWidgets.对于追求完美的C++程序猿,再也 ...
- 网页favicon.ico图标设置(转)
随便打开一个网页:比如 http://www.baidu.com/ 可以看到在浏览器的标签头上面显示了一个图标,这个图标是:,也就是我们常说的favicon.ico. 由于这篇文章主要讨论favico ...
- hdu4553(线段树)
题目连接:http://acm.hdu.edu.cn/showproblem.php?pid=4553 线段树功能:update:区间替换 query:询问满足条件的最左断点 分析:poj3667的加 ...
- hash在Coreseek 中配置bigint
304 $sphinxapi->SetSelect('id, domain_hash'); 304 $sphinxapi->SetConnectTimeout(3); 305 $sphin ...
- Oracle 收集统计信息11g和12C在差异
Oracle 基于事务临时表11g和12C下,能看到临时表后收集的统计数据,前者记录被清除,后者没有,这是一个很重要的不同. 关于使用企业环境12C,11g,使用暂时表会造成时快时慢.之前我有帖子ht ...
- Linux下一个C(编程入门.h档,.c档,而路多文件的调用)
watermark/2/text/aHR0cDovL2Jsb2cuY3Nkbi5uZXQvdG90b3R1enVvcXVhbg==/font/5a6L5L2T/fontsize/400/fill/I0 ...
- WPF对于xml的简单操作(上)
private void button1_Click(object sender, RoutedEventArgs e) { XmlTextWriter writer = new XmlTextWri ...