P2312 解方程
题目描述
已知多项式方程:
a0+a1x+a2x^2+..+anx^n=0
求这个方程在[1, m ] 内的整数解(n 和m 均为正整数)
输入输出格式
输入格式:
输入文件名为equation .in。
输入共n + 2 行。
第一行包含2 个整数n 、m ,每两个整数之间用一个空格隔开。
接下来的n+1 行每行包含一个整数,依次为a0,a1,a2..an
输出格式:
输出文件名为equation .out 。
第一行输出方程在[1, m ] 内的整数解的个数。
接下来每行一个整数,按照从小到大的顺序依次输出方程在[1, m ] 内的一个整数解。
输入输出样例
2 10
1
-2
1
1
1
2 10
2
-3
1
2
1
2
2 10
1
3
2
0
说明
30%:0<n<=2,|ai|<=100,an!=0,m<100
50%:0<n<=100,|ai|<=10^100,an!=0,m<100
70%:0<n<=100,|ai|<=10^10000,an!=0,m<10000
100%:0<n<=100,|ai|<=10^10000,an!=0,m<1000000
#include<iostream>
#include<cstdio>
#include<cstring>
#include<cstdlib>
#include<cmath>
#include<algorithm>
using namespace std;
int read()
{
int x=,f=;char ch=getchar();
while(ch<''||ch>''){if(ch=='-')f=-;ch=getchar();}
while(ch>=''&&ch<=''){x=x*+ch-'';ch=getchar();}
return x*f;
}
int mod[]={,,,,};
int n,m;
int ans[];
int a[][],pre[][],res[][];
char ch[];
inline int cal(int t,int x)
{
int sum=;
for(int i=;i<=n;i++)
sum=(sum+a[t][i]*pre[t][i])%mod[t];
if(sum<)sum+=mod[t];
return sum;
}
inline bool jud(int x)
{
for(int t=;t<;t++)
if(res[t][x%mod[t]]!=)return ;
return ;
}
int main()
{
n=read();m=read();
for(int i=;i<=n;i++)
{
scanf("%s",ch+);
int l=strlen(ch+);
bool flag=;
for(int t=;t<;t++)
if(ch[]!='-')a[t][i]=ch[]-'';
else a[t][i]=,flag=;
for(int t=;t<;t++)
{
for(int k=;k<=l;k++)
a[t][i]=(a[t][i]*+ch[k]-'')%mod[t];
if(flag)a[t][i]=-a[t][i];
}
}
for(int t=;t<;t++)
for(int x=;x<mod[t];x++)
{
pre[t][]=;
for(int i=;i<=n;i++)pre[t][i]=(pre[t][i-]*x)%mod[t];
res[t][x]=cal(t,x);
}
for(int i=;i<=m;i++)
if(jud(i))ans[++ans[]]=i;
printf("%d\n",ans[]);
for(int i=;i<=ans[];i++)
printf("%d\n",ans[i]);
return ;
}
P2312 解方程的更多相关文章
- codevs3732==洛谷 解方程P2312 解方程
P2312 解方程 195通过 1.6K提交 题目提供者该用户不存在 标签数论(数学相关)高精2014NOIp提高组 难度提高+/省选- 提交该题 讨论 题解 记录 题目描述 已知多项式方程: a ...
- bzoj3751 / P2312 解方程
P2312 解方程 bzoj3751(数据加强) 暴力的一题 数据范围:$\left | a_{i} \right |<=10^{10000}$.连高精都无法解决. 然鹅面对这种题,有一种常规套 ...
- 洛谷 P2312 解方程 解题报告
P2312 解方程 题目描述 已知多项式方程: \(a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\)求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) 均为正整 ...
- 洛谷P2312 解方程题解
洛谷P2312 解方程题解 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 \([1,m]\) 内的整数解(\(n\) 和 \(m\) ...
- 洛谷 P2312 解方程 题解
P2312 解方程 题目描述 已知多项式方程: \[a_0+a_1x+a_2x^2+\cdots+a_nx^n=0\] 求这个方程在 [1,m][1,m] 内的整数解(\(n\) 和 \(m\) 均为 ...
- [noip2014]P2312 解方程
P2312 解方程 其实这道题就是求一个1元n次方程在区间[1, m]上的整数解. 我们枚举[1, m]上的所有整数,带进多项式中看看结果是不是0即可. 这里有一个技巧就是秦九韶算法,请读者自行查看学 ...
- P2312 解方程(随机化)
P2312 解方程 随机化的通俗解释:当无法得出100%正确的答案时,考虑随机化一波,于是这份代码很大可能会对(几乎不可能出错). 比如这题:把系数都模一个大质数(也可以随机一个质数),然后O(m)跑 ...
- [NOIP2014] 提高组 洛谷P2312 解方程
题目描述 已知多项式方程: a0+a1x+a2x^2+..+anx^n=0 求这个方程在[1, m ] 内的整数解(n 和m 均为正整数) 输入输出格式 输入格式: 输入文件名为equation .i ...
- 洛谷 P2312 解方程
题目 首先,可以确定的是这题的做法就是暴力枚举x,然后去计算方程左边与右边是否相等. 但是noip的D2T3怎么会真的这么简单呢?卡常卡的真是熟练 你需要一些优化方法. 首先可以用秦九韶公式优化一下方 ...
- 【数论】[涨姿势:同余]P2312解方程
题目描述 已知多项式方程:\(a_0 + a_1x + a_2x^2+...+a_nx^n = 0\) 求这个方程在[1,m]内的整数解 \(1\leq n\leq100,|a_i|\leq 10^{ ...
随机推荐
- 代码实现sql数据库的附加(通常在安装的时候)
判断数据库是否已经存在 SqlConnection judgeConn = new SqlConnection("server=.;database=master;uid="+us ...
- jQuery习题的一些总结
1.在div元素中,包含了一个<span>元素,通过has选择器获取<div>元素中的<span>元素的语法是? 提示使用has $("div:has(s ...
- C#Windows窗体应用程序MyKTV项目
后台管理其中有一个添加歌手信息和歌曲信息的窗体要点击按钮并上传文件,因为对那些文件流什么的不懂,所以用了老师教的最简单的判断方法,但此方法只是按后缀名判断文件的样式,如果后缀名乱改就不行了! 此时需要 ...
- sql server 查看数据库编码格式
user masterselect SERVERPROPERTY(N'edition') as Edition --数据版本,如企业版.开发版等,SERVERPROPERTY(N'collation' ...
- RMAN命令
一.启动.关闭数据库 在RMAN中执行关闭和启动数据库的命令与SQL环境下一模一样.当然,在执行之前,你需要先连接到目标数据库,如例: C:\Documents and Settings\Admini ...
- 夺命雷公狗---Thinkphp----15之遍历出来的栏目页的完成
我们首页的写法和我们的文章页的代码很相似,我们要在点击我们的栏目页的时候遍历出对应的代码: 那么我们就直接来创建一个ListsController.class.php的文件,代码如下所示: 老规矩遍历 ...
- zw版【转发·台湾nvp系列Delphi例程】HALCON Histogram
zw版[转发·台湾nvp系列Delphi例程]HALCON Histogram unit Unit1;interfaceuses Windows, Messages, SysUtils, Varian ...
- zw版【转发·台湾nvp系列Delphi例程】HALCON RegionToBin2
zw版[转发·台湾nvp系列Delphi例程]HALCON RegionToBin2 unit Unit1;interfaceuses Windows, Messages, SysUtils, Var ...
- ADB server didn't ACK的解决方法
异常信息如下: C:\Users\Administrator>adb devices* daemon not running. starting it now on port 5037 *ADB ...
- android 应用架构随笔五(ActionBar与侧滑菜单DrawerLayout)
ActionBar(V7)的添加非常简单,只需要在AndroidManifest.xml中指定Application或Activity的theme是Theme.Holo或其子类就可以了,在Androi ...