Drawing with GoogLeNet
In my previous post, I showed how you can use deep neural networks to generate image examples of the classes it’s been trained to classify. Since we’ve already started using deep neural networks in ways they were never intended to be used, let’s abuse them some more.
There’s nothing constraining us to generate image examples of one class at a time. Let’s see what happens if we try to generate two class visualizations close to each other, such as for instance a gorilla and a french horn
Gorilla playing an odd-looking french horn
Well, it kind of looks like a gorilla playing the french horn. Or let’s try dressing up a gibbon via “mixing” the gibbon class with some of the clothing classes:

A gibbon in a poncho (left) and an ET-looking gibbon in a labcoat (right)
Or what about making some scenic nature drawings, such as some foxes underneath an erupting volcano:
Foxes beneath an erupting volcano
Or a ballpoint pen drawing a castle:
A vague ballpoint pen drawing a castle
These mixes of classes kind of work out, though it should be noted that these are the best selections from a number of mixes I tried. It’s also tempting to create mixes of animal classes to generate some new kind of monster breeds, but most of the time this doesn’t work so well. Here’s some I tried though, a mix of a scotch terrier and a tarantula, and a mix of a bee and a gibbon:

A slightly spidery looking scotch terrier (left) and a slightly gibbon-looking bee (right)
Another fun thing we can do when generatinge images is to do the gradient ascent randomly along paths instead of on a single point. This of course takes a bit longer time, but it allows us to “draw” with the output, such as for instance drawing a mountain range of alps:
![]()
or a line of jellyfish:
![]()
or a circle of junco birds:
![]()
If we try to fill a larger region with visualizations of a class, we can also apply clipping masks, i.e. forcing the pixels to zero in some pattern during gradient ascent. So we can for instance use letters as clipping masks and try to create the alphabet with animals:
An A of apes
A B of bears
And a C of cobras
Alright, that’s enough abuse of our deep neural network for today. I’ve just scratched the surface here, but there are several fun ways to use deep neural networks for creative visual work with a bit of experimentation (and lots of patience). I’m going to put the ipython notebooks I used to make these examples in the deepdraw repository as soon as I’ve cleaned up the code, so stay tuned via twitter.
Drawing with GoogLeNet的更多相关文章
- .Net Core上用于代替System.Drawing的类库
目前.Net Core上没有System.Drawing这个类库,想要在.Net Core上处理图片得另辟蹊径. 微软给出了将来取代System.Drawing的方案,偏向于使用一个单独的服务端进行各 ...
- 关于Cewu Lu等的《Combining Sketch and Tone for Pencil Drawing Production》一文铅笔画算法的理解和笔录。
相关论文的链接:Combining Sketch and Tone for Pencil Drawing Production 第一次看<Combining Sketch and Tone f ...
- (转)System.Drawing.Color的颜色对照表
经常使用System.Drawing.Color, 本篇介绍一下颜色与名称及RGB值的对应关系. 1. 颜色与名称的对照表(点击下图放大看): 2. 颜色与RGB值对照表: Color.AliceBl ...
- .Net Core 之 图形验证码 本文介绍.Net Core下用第三方ZKWeb.System.Drawing实现验证码功能。
本文介绍.Net Core下用第三方ZKWeb.System.Drawing实现验证码功能. 通过测试的系统: Windows 8.1 64bit Ubuntu Server 16.04 LTS 64 ...
- #Deep Learning回顾#之LeNet、AlexNet、GoogLeNet、VGG、ResNet
CNN的发展史 上一篇回顾讲的是2006年Hinton他们的Science Paper,当时提到,2006年虽然Deep Learning的概念被提出来了,但是学术界的大家还是表示不服.当时有流传的段 ...
- System.Drawing.Color
System.Drawing.Color color=Color.Red; System.Drawing.Color color=Color.FromArgb(,,); System.Drawing. ...
- drawing
/* 程序名:drawing..c 功能:展示OpenCV的图像绘制功能 */ #include "cv.h" #include "highgui.h" #in ...
- GoogleNet tips
Inception Module googlenet的Inception Module Idea 1: Use 1x1, 3x3, and 5x5 convolutions in parallel t ...
- 使用System.Drawing.Imaging.dll进行图片的合并
在最近开发项目的时候有时候需要进行图片的合并,即将两张图片合并成功一张图片 合并图片的代码: #region 两张图片的合并 /// <summary > /// 将Image对象转化成二 ...
随机推荐
- Laravel 安装predis 扩展
在安装predis扩展之前先安装composer,安装教程在https://getcomposer.org/download/: php -r "copy('https://getcompo ...
- SBM is Not Sale And Run Company
data = """ Well,We will bet you dollars to donuts,there are so many crusher provider ...
- 11.python中的元组
在学习什么是元组之前,我们先来看看如何创建一个元组对象: a = ('abc',123) b = tuple(('def',456)) print a print b
- 算法系列5《SSF33》
SSF33算法是以128位分组为单位进行运算,密钥长度为16字节,该算法也可以被用于安全报文传送和MAC机制密文运算. 使用SSF33算法和基于3-DES的对称加密机制使用相同长度的密钥,能够同原有的 ...
- .NET开源工作流RoadFlow-系统布署及注意事项
非常感谢您在百忙之中抽空来了解RoadFlow,下面我们说一下如果在自己本地搭建环境吧. 1.环境要求 数据库:sqlserver2005以上版本.服务器:IIS6.0以上,或iisexpress.d ...
- poj 3061 Subsequence
题目连接 http://poj.org/problem?id=3061 Subsequence Description A sequence of N positive integers (10 &l ...
- hdu 5210 Delete
原题链接:http://acm.hdu.edu.cn/showproblem.php?pid=5210 简单题如下: #include<algorithm> #include<ios ...
- 九度oj 1530 最长不重复子串
原题链接:http://ac.jobdu.com/problem.php?pid=1530 字符串简单题,看似O(n^2)的复杂度10000的数据量会tle,其实最长不重复子串不超过26个嘛... 如 ...
- 制作越狱版本的ipa文件
1.新建项目,证书选择开发者自己创建的证书 2.编译项目,在工程左侧树形菜单中,找到Product,找到编译后的项目,邮件,找到.app文件路径. 3.将这个app文件拖入到iTunes,邮件点击图标 ...
- Beyond Compare 4
Beyond Compare是一款不可多得的专业级的文件夹和文件对比工具.使用他可以很方便的对比出两个文件夹或者文件的不同之处.并把相差的每一个字节用颜色加以表示,查看方便.并且支持多种规则对比.