02_opencv_python_图像处理进阶
1 灰度图
import cv2 # opencv读取的格式是BGR
import numpy as np
import matplotlib.pyplot as plt # Matplotlib是RGB
%matplotlib inline img=cv2.imread('cat.jpg')
img_gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)
img_gray.shape
cv2.imshow("img_gray", img_gray)
cv2.waitKey(0)
cv2.destroyAllWindows()

2 HSV
- H - 色调(主波长)。
- S - 饱和度(纯度/颜色的阴影)。
- V值(强度)
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV)
cv2.imshow("hsv", hsv)
cv2.waitKey(0)
cv2.destroyAllWindows()

3 图像阈值
参考上篇博客中的 基于颜色提出目标
# 1.将RGB转换成HSV色彩空间
hsv = cv2.cvtColor(img, cv2.COLOR_BGR2HSV) # 2.定义数组,说明你要提取(过滤)的颜色目标
# 三通道,所以是三个参数
# 红色
lower_hsv_r = np.array([156, 43, 46])
upper_hsv_r = np.array([180, 255, 255]) # 3.进行过滤,提取,得到二值图像
mask_red = cv2.inRange(hsv, lower_hsv_r, upper_hsv_r) # 通道数是 1
3.1 ret, dst = cv2.threshold(src, thresh, maxval, type)
- src: 输入图,只能输入单通道图像,通常来说为灰度图
- dst: 输出图
- thresh: 阈值
- maxval: 当像素值超过了阈值(或者小于阈值,根据type来决定),所赋予的值
type:二值化操作的类型,包含以下5种类型: cv2.THRESH_BINARY; cv2.THRESH_BINARY_INV; cv2.THRESH_TRUNC; cv2.THRESH_TOZERO;cv2.THRESH_TOZERO_INV
cv2.THRESH_BINARY 超过阈值部分取maxval(最大值),否则取0
- cv2.THRESH_BINARY_INV THRESH_BINARY的反转
- cv2.THRESH_TRUNC 大于阈值部分设为阈值,否则不变
- cv2.THRESH_TOZERO 大于阈值部分不改变,否则设为0
- cv2.THRESH_TOZERO_INV THRESH_TOZERO的反转
ret, thresh1 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img_gray, 127, 255, cv2.THRESH_TOZERO_INV) titles = ['Original Image', 'BINARY', 'BINARY_INV', 'TRUNC', 'TOZERO', 'TOZERO_INV']
images = [img, thresh1, thresh2, thresh3, thresh4, thresh5] for i in range(6):
plt.subplot(2, 3, i + 1), plt.imshow(images[i], 'gray')
plt.title(titles[i])
plt.xticks([]), plt.yticks([])
plt.show()

4 图像平滑(利用各种卷积核)

img = cv2.imread('lenaNoise.png') # 椒盐噪音
cv2.imshow('img', img)
cv2.waitKey(0)
cv2.destroyAllWindows()

# 均值滤波
# 简单的平均卷积操作
blur = cv2.blur(img, (3, 3)) cv2.imshow('blur', blur)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 方框滤波
# 基本和均值一样,可以选择归一化
box = cv2.boxFilter(img,-1,(3,3), normalize=True) cv2.imshow('box', box)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 高斯滤波
# 高斯模糊的卷积核里的数值是满足高斯分布,相当于更重视中间的
aussian = cv2.GaussianBlur(img, (5, 5), 1) cv2.imshow('aussian', aussian)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 中值滤波
# 相当于用中值代替
median = cv2.medianBlur(img, 5) # 中值滤波 cv2.imshow('median', median)
cv2.waitKey(0)
cv2.destroyAllWindows()
# 展示所有的
res = np.hstack((blur,aussian,median))
#print (res)
cv2.imshow('median vs average', res)
cv2.waitKey(0)
cv2.destroyAllWindows()

5 形态学-腐蚀操作
02_opencv_python_图像处理进阶的更多相关文章
- PHP学习笔记 - 进阶篇(2)
PHP学习笔记 - 进阶篇(2) 函数 1.自定义函数 PHP内置了超过1000个函数,因此函数使得PHP成为一门非常强大的语言.大多数时候我们使用系统的内置函数就可以满足需求,但是自定义函数通过将一 ...
- Kinect for Windows SDK开发入门(15):进阶指引 下
Kinect for Windows SDK开发入门(十五):进阶指引 下 上一篇文章介绍了Kinect for Windows SDK进阶开发需要了解的一些内容,包括影像处理Coding4Fun K ...
- Python语言学习之Python入门到进阶
人们常说Python语言简单,编写简单程序时好像也确实如此.但实际上Python绝不简单,它也是一种很复杂的语言,其功能特征非常丰富,能支持多种编程风格,在几乎所有方面都能深度定制.要想用好Pytho ...
- Photoshop零基础教程集锦,助你快速进阶为大佬,轻松、任性!!!
现今,对于Web或App UI设计师而言,除了不断学习专业知识,提升设计技能.掌握一款得心应手的设计工具(例如设计师们常用的图像处理工具PhotoShop,矢量图绘制工具AI, 图形视频处理工具AE, ...
- opencv图像处理基础 (《OpenCV编程入门--毛星云》学习笔记一---五章)
#include <QCoreApplication> #include <opencv2/core/core.hpp> #include <opencv2/highgu ...
- 年薪20万Python工程师进阶(7):Python资源大全,让你相见恨晚的Python库
我是 环境管理 管理 Python 版本和环境的工具 pyenv – 简单的 Python 版本管理工具. Vex – 可以在虚拟环境中执行命令. virtualenv – 创建独立 Python 环 ...
- 我的Android进阶之旅------>Android中编解码学习笔记
编解码学习笔记(一):基本概念 媒体业务是网络的主要业务之间.尤其移动互联网业务的兴起,在运营商和应用开发商中,媒体业务份量极重,其中媒体的编解码服务涉及需求分析.应用开发.释放license收费等等 ...
- iOS 开发技术栈与进阶
最近有一些开发朋友问我应该怎样提升自己的能力,回想起来做了这么久 iOS 开发,我也有过那种“让我做一个功能实现个需求我会做,但接下来怎样提高我不知道.”的时期,这里尝试列一下 iOS 开发的相关技术 ...
- FPGA经典:Verilog传奇与基于FPGA的数字图像处理原理及应用
一 简述 最近恶补基础知识,借了<<Verilog传奇>>,<基于FPGA的嵌入式图像处理系统设计>和<<基千FPGA的数字图像处理原理及应用>& ...
随机推荐
- Java线上问题排查神器Arthas实战分析
概述 背景 是不是在实际开发工作当中经常碰到自己写的代码在开发.测试环境行云流水稳得一笔,可一到线上就经常不是缺这个就是少那个反正就是一顿报错抽风似的,线上调试代码又很麻烦,让人头疼得抓狂:而且deb ...
- 回顾 Flutter 2021 重要时刻,奉上虎年红包封面喜迎新年!
2021 年,Flutter 正式进入 2.x 系列的正式版发布,年初的 Flutter 2 的发布 打开了一个新的"格局",为 Flutter 的加入了第五大特色--「可移植性」 ...
- LeetCode 每日一题 458. 可怜的小猪
题目描述 有 buckets 桶液体,其中 正好 有一桶含有毒药,其余装的都是水.它们从外观看起来都一样.为了弄清楚哪只水桶含有毒药,你可以喂一些猪喝,通过观察猪是否会死进行判断.不幸的是,你只有 m ...
- AI算法测评(二)--算法测试流程
根据算法测试过程中遇到的一些问题和管理规范, 梳理出算法测试工作需要关注的一些点: 编号 名称 描述信息 备注 1 明确算法测试需求 明确测试目的 明确测试需求, 确认测试需要的数据及场景 明确算法服 ...
- Win10 提示凭证不工作问题
感谢大佬:https://cloud.tencent.com/developer/article/1337081 在公司局域网远程自己计算机的时候,突然无法远程了,提示"您的凭据不工作 之前 ...
- Shell编程中的用户输入处理
Linux read命令用于从标准输入读取数值. read 内部命令被用来从标准输入读取单行数据.这个命令可以用来读取键盘输入,当使用重定向的时候,可以读取文件中的一行数据. 语法 read [-er ...
- Servlet中@WebServlet属性详解
感谢原文作者:想当一只小小攻城狮 原文链接:https://blog.csdn.net/weixin_45493751/article/details/100559683 在Servlet中,设置了@ ...
- iOS应用性能调优--初级---王朋
目录 我要给出的建议将分为三个不同的等级: 入门级. 中级和进阶级: 入门级(这是些你一定会经常用在你app开发中的建议) 1. 用ARC管理内存 2. 在正确的地方使用reuseIdentifier ...
- Docker安全及日志管理
Docker安全及日志管理 目录 Docker安全及日志管理 一.Docker容器与虚拟机的区别 1. 隔离与共享 2. 性能与损耗 3. 总结 二.Docker存在的安全问题 1. Docker自身 ...
- docker基础——2.镜像管理
1. Docker镜像的主要特点 (1) 采用分层构建机制. 最底层为bootfs,用于系统引导的文件系统,包括bootloader和kernel,容器启动后会被卸载以节约资源. 其上为rootfs, ...