可以发现,如果一个整体一起考虑是不能找到一个合适的状态来描述这个情形的。

因此可以考虑寻找整体的反面,也就是将每个维度分开考虑。

不难发现每个维度本质上是一样的,因此不需要考虑不同维度之间的区别。

那么对于每个维度而言,它必须从 \(0\) 出发再回到 \(0\),那么假设它往外走了 \(k\) 步,那么往内也必然走了 \(k\) 步。

不难发现每个维度本质上是在总共的 \(T\) 步中选择了 \(k\) 个位置在这个维度上往外走,再选择 \(k\) 个位置往内走,于是就可以直接考虑 \(dp\) 了。

令 \(dp_{i, j}\) 表示前 \(i\) 个维度一共走了 \(j\) 步的方案,假设最终一共走的步数为 \(T\),那么有转移:

\[dp_{i, j} = \sum\limits_{k = 0} ^ {\lfloor \frac{j}{2} \rfloor} dp_{i - 1, j - 2 \times k} \times \dbinom{T - j + 2 \times k}{k} \times \dbinom{T - j + k}{k}
\]

这样就可以 \(O(n ^ 3)\) 地算了,但每次查询 \(T\) 都会改变,怎么办呢?

回到 \(dp\) 转移之前的这个流程,不难发现实质上本质上是 \(2n\) 个多重集合排列的问题。

回忆一下这个问题:\(m\) 个集合第 \(i\) 个集合内有 \(a_i\) 个元素不标号,满足 \(\sum a_i = n\),问排列的方案数,不难发现即为:

\[\frac{n!}{a_1!a_2! \cdots a_m!}
\]

可以发现分母是与 \(n\) 无关的,而分子又是与每个 \(a_i\) 无关的。

因此我们在 \(dp\) 的过程中先不计算分子对答案的贡献,只计算分母对答案的贡献,最后查询直接乘 \(T!\) 即可。

实际上也可以考虑转移的时候以插入的形式转移,本质上是一致的,在此不再赘述。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 200 + 5;
const int L = 200;
const int Mod = 1e9 + 7;
int n, T, Q, fac[N], inv[N], dp[N][N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b) { return (a += b) >= Mod ? a - Mod : a;}
int Dec(int a, int b) { return (a -= b) < 0 ? a + Mod : a;}
int Mul(int a, int b) { return 1ll * a * b % Mod;}
int fpow(int a, int b) { int ans = 1; for (; b; a = Mul(a, a), b >>= 1) if(b & 1) ans = Mul(ans, a); return ans;}
int C(int n, int m) { return n < m ? 0 : Mul(fac[n], Mul(inv[m], inv[n - m]));}
int main() {
fac[0] = inv[0] = dp[0][0] = 1;
rep(i, 1, L) fac[i] = Mul(fac[i - 1], i), inv[i] = fpow(fac[i], Mod - 2);
rep(i, 1, L) rep(j, 0, L) rep(k, 0, j / 2)
dp[i][j] = Inc(dp[i][j], Mul(dp[i - 1][j - 2 * k], Mul(inv[k], inv[k])));
Q = read();
while (Q--) {
n = read(), T = read();
printf("%d\n", Mul(dp[n][T], fac[T]));
}
return 0;
}

值得一提的,广义上的正难则反就是从难点的对立面来考虑,比如:具体问题抽象化,抽象问题具体化,区间问题单点化等等。

SP19149 INS14H - Virus Revisited的更多相关文章

  1. Virus.Win32.Virlock.b分析

    0x00 样本说明 分析样本是被0b500d25f645c0b25532c1e3c9741667的样本感染得到.感染前的文件是Tcpview.exe,一款windows网络连接查看工具. 感染前后文件 ...

  2. csuoj 1394: Virus Replication

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1394 1394: Virus Replication Time Limit: 1 Sec  Mem ...

  3. sublimeText jsformat 插件被当做病毒 virus

    最近在个只可往他里面发邮件,不能往外上任何互联网的地方工作,用 sublimetext 要装个sublime 插件 jsformat 十分麻烦.用gmail邮箱发总是报病毒. 最后挨个尝试,发现是 j ...

  4. hdu 3695:Computer Virus on Planet Pandora(AC自动机,入门题)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  5. HDU 3695 Computer Virus on Planet Pandora(AC自动机模版题)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  6. hdu ----3695 Computer Virus on Planet Pandora (ac自动机)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  7. 最近碰到了一个病毒木马:virus.win32.ramnit.B

    由于 使用了 简单游 平台上的挂机工具: 番茄-自动人机对战免费版1217  ,使用了很久,头段时间家里电脑 360提示有病毒,本来我一直忽略的,但 我扫描了一下,大量的这个木马,于是 吧 简单游卸载 ...

  8. ZOJ 3430 Detect the Virus

    传送门: Detect the Virus                                                                                ...

  9. HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)

    Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...

随机推荐

  1. TKE 用户故事 - 作业帮 PB 级低成本日志检索服务

    作者 吕亚霖,2019年加入作业帮,作业帮架构研发负责人,在作业帮期间主导了云原生架构演进.推动实施容器化改造.服务治理.GO微服务框架.DevOps的落地实践. 莫仁鹏,2020年加入作业帮,作业帮 ...

  2. css--深入理解z-index引发的层叠上下文、层叠等级和层叠顺序

    前言 在编写css样式代码的时候,我们经常会遇到z-index属性的使用,我们可能只了解z-index能够提高元素的层级,并不知道具体是怎么实现的.本文就来总结一个由z-index 引发的层叠上下文和 ...

  3. CS5213demoboard设计电路|DMI转VGA带II2S音频输出转接线|CS5213方案

    CS5213是台湾CAPSTONE瑞奇达推出的一款HDMI(高清多媒体接口)到VGA转换芯片. CS5213设计HDMI转VGA带II2S转接线产品特性: ◇将完整的HDMI信号转换为VGA输出◇支持 ...

  4. Git 标签使用详解

    列出标签 # 默认按字母排序显示 $ git tag # 模糊匹配查找标签 $ git tag -l "v1.8.5*" 创建标签 # 创建附注标签 $ git tag -a v1 ...

  5. 初识python: 模块定义及调用

    一.定义 模块:用来从逻辑上组织python代码(变量.函数.类.逻辑:实现一个功能),本质就是.py结尾的python文件(比如:文件名:test.py,对应的模块名:test) 包:用来从逻辑上组 ...

  6. 用一道题 来 复习 MySQL 的 复杂 sql 语句

    1.前言 太久没有在数据库做一些复杂的sql了,基本上将数据库的查询逻辑全放在了Java里做, 一来呢,可以减轻数据库的负担,二来呢,在java写,逻辑感会更强,数据类型更丰富也容易操作. 然而... ...

  7. 第10组 Alpha冲刺 (5/6)(组长)

    1.1基本情况 ·队名:今晚不睡觉 ·组长博客:https://www.cnblogs.com/cpandbb/p/13996848.html ·作业博客:https://edu.cnblogs.co ...

  8. Python操作数据库实战

    pymysql # -*- coding: utf-8 -*- """ @Datetime: 2018/12/26 @Author: Zhang Yafei " ...

  9. 通过js触发launch事件获取页面信息

    注:图片如果损坏,点击文章链接:https://www.toutiao.com/i6814776265602499080/ 承接上一篇文档<页面Cookie的JS文件编写> 思路 继续之前 ...

  10. HBase文档学习顺序

    1.<HBase基础概念知识学习> https://www.toutiao.com/i6774215329498268164/ 2.<VM安装CentOS6.5> https: ...