可以发现,如果一个整体一起考虑是不能找到一个合适的状态来描述这个情形的。

因此可以考虑寻找整体的反面,也就是将每个维度分开考虑。

不难发现每个维度本质上是一样的,因此不需要考虑不同维度之间的区别。

那么对于每个维度而言,它必须从 \(0\) 出发再回到 \(0\),那么假设它往外走了 \(k\) 步,那么往内也必然走了 \(k\) 步。

不难发现每个维度本质上是在总共的 \(T\) 步中选择了 \(k\) 个位置在这个维度上往外走,再选择 \(k\) 个位置往内走,于是就可以直接考虑 \(dp\) 了。

令 \(dp_{i, j}\) 表示前 \(i\) 个维度一共走了 \(j\) 步的方案,假设最终一共走的步数为 \(T\),那么有转移:

\[dp_{i, j} = \sum\limits_{k = 0} ^ {\lfloor \frac{j}{2} \rfloor} dp_{i - 1, j - 2 \times k} \times \dbinom{T - j + 2 \times k}{k} \times \dbinom{T - j + k}{k}
\]

这样就可以 \(O(n ^ 3)\) 地算了,但每次查询 \(T\) 都会改变,怎么办呢?

回到 \(dp\) 转移之前的这个流程,不难发现实质上本质上是 \(2n\) 个多重集合排列的问题。

回忆一下这个问题:\(m\) 个集合第 \(i\) 个集合内有 \(a_i\) 个元素不标号,满足 \(\sum a_i = n\),问排列的方案数,不难发现即为:

\[\frac{n!}{a_1!a_2! \cdots a_m!}
\]

可以发现分母是与 \(n\) 无关的,而分子又是与每个 \(a_i\) 无关的。

因此我们在 \(dp\) 的过程中先不计算分子对答案的贡献,只计算分母对答案的贡献,最后查询直接乘 \(T!\) 即可。

实际上也可以考虑转移的时候以插入的形式转移,本质上是一致的,在此不再赘述。

#include <bits/stdc++.h>
using namespace std;
#define rep(i, l, r) for (int i = l; i <= r; ++i)
const int N = 200 + 5;
const int L = 200;
const int Mod = 1e9 + 7;
int n, T, Q, fac[N], inv[N], dp[N][N];
int read() {
char c; int x = 0, f = 1;
c = getchar();
while (c > '9' || c < '0') { if(c == '-') f = -1; c = getchar();}
while (c >= '0' && c <= '9') x = x * 10 + c - '0', c = getchar();
return x * f;
}
int Inc(int a, int b) { return (a += b) >= Mod ? a - Mod : a;}
int Dec(int a, int b) { return (a -= b) < 0 ? a + Mod : a;}
int Mul(int a, int b) { return 1ll * a * b % Mod;}
int fpow(int a, int b) { int ans = 1; for (; b; a = Mul(a, a), b >>= 1) if(b & 1) ans = Mul(ans, a); return ans;}
int C(int n, int m) { return n < m ? 0 : Mul(fac[n], Mul(inv[m], inv[n - m]));}
int main() {
fac[0] = inv[0] = dp[0][0] = 1;
rep(i, 1, L) fac[i] = Mul(fac[i - 1], i), inv[i] = fpow(fac[i], Mod - 2);
rep(i, 1, L) rep(j, 0, L) rep(k, 0, j / 2)
dp[i][j] = Inc(dp[i][j], Mul(dp[i - 1][j - 2 * k], Mul(inv[k], inv[k])));
Q = read();
while (Q--) {
n = read(), T = read();
printf("%d\n", Mul(dp[n][T], fac[T]));
}
return 0;
}

值得一提的,广义上的正难则反就是从难点的对立面来考虑,比如:具体问题抽象化,抽象问题具体化,区间问题单点化等等。

SP19149 INS14H - Virus Revisited的更多相关文章

  1. Virus.Win32.Virlock.b分析

    0x00 样本说明 分析样本是被0b500d25f645c0b25532c1e3c9741667的样本感染得到.感染前的文件是Tcpview.exe,一款windows网络连接查看工具. 感染前后文件 ...

  2. csuoj 1394: Virus Replication

    http://acm.csu.edu.cn/OnlineJudge/problem.php?id=1394 1394: Virus Replication Time Limit: 1 Sec  Mem ...

  3. sublimeText jsformat 插件被当做病毒 virus

    最近在个只可往他里面发邮件,不能往外上任何互联网的地方工作,用 sublimetext 要装个sublime 插件 jsformat 十分麻烦.用gmail邮箱发总是报病毒. 最后挨个尝试,发现是 j ...

  4. hdu 3695:Computer Virus on Planet Pandora(AC自动机,入门题)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  5. HDU 3695 Computer Virus on Planet Pandora(AC自动机模版题)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  6. hdu ----3695 Computer Virus on Planet Pandora (ac自动机)

    Computer Virus on Planet Pandora Time Limit: 6000/2000 MS (Java/Others)    Memory Limit: 256000/1280 ...

  7. 最近碰到了一个病毒木马:virus.win32.ramnit.B

    由于 使用了 简单游 平台上的挂机工具: 番茄-自动人机对战免费版1217  ,使用了很久,头段时间家里电脑 360提示有病毒,本来我一直忽略的,但 我扫描了一下,大量的这个木马,于是 吧 简单游卸载 ...

  8. ZOJ 3430 Detect the Virus

    传送门: Detect the Virus                                                                                ...

  9. HDU 3695 / POJ 3987 Computer Virus on Planet Pandora(AC自动机)(2010 Asia Fuzhou Regional Contest)

    Description Aliens on planet Pandora also write computer programs like us. Their programs only consi ...

随机推荐

  1. Windows服务注册(需要指定config文件的情况下)

    最近,遇到一个问题:需要将telegraf在Win平台下注册为windows服务(避免误操作关闭CMD窗口): 尝试了网上的几种注册Windows服务的方法,发现无法将telegraf这种需要在CMD ...

  2. 第二十三个知识点:写一个实现蒙哥马利算法的C程序

    第二十三个知识点:写一个实现蒙哥马利算法的C程序 这次博客我将通过对蒙哥马利算法的一个实际的实现,来补充我们上周蒙哥马利算法的理论方面.这个用C语言实现的蒙哥马利算法,是为一个位数为64的计算机编写的 ...

  3. Color Models (RGB, CMY, HSI)

    目录 概 定义 RGB CMY CMYK HSI 相互的转换 RGB <=> CMY CMY <=> CMYK CMY > CMYK CMYK > CMY RGB ...

  4. MySQL数据操作与查询笔记 • 【第4章 SELECT 数据查询】

    全部章节   >>>> 本章目录 4.1 select 选择列表 4.1.1 select 基本结构 4.1.2 选择列表 4.2 MySQL 运算符 4.2.1 MySQL ...

  5. 使用 windows bat 脚本命令 一键启动MySQL服务

    @echo off rem Copyright (c) 2019 Moses and/or its affiliates. rem Get Administrator Rights >nul 2 ...

  6. Java Swing设计简单商品信息管理系统(java swing+mysql+eclipse)

    一.概述 为了管理好商店库存信息,提升店铺管理工作效率,结合实际工作需要,设计和开发本系统,主要用于商店商品信息维护出入库等.包含商品库存信息查看.商品信息修改,新增商品信息,删除信息等功能. 二.功 ...

  7. VMware客户端vSphereClient新建虚拟机

    1.说明 VMware客户端工具vSphere Client, 用来连接和管理ESX或ESXi主机(下面称为宿主机), 可以方便的创建.管理虚拟机,并分配相应的资源.宿主机就是使用虚拟化软件运行虚拟机 ...

  8. 游戏中的自动寻路-A*算法(第一版优化——走斜线篇)

    一.简述以及地图 G 表示从起点移动到网格上指定方格的移动距离 (暂时不考虑沿斜向移动,只考虑上下左右移动). H 表示从指定的方格移动到终点的预计移动距离,只计算直线距离,走直角篇走的是直角路线. ...

  9. c# - 常量定义与赋值

    1.前言 c#与Java很相似,但是不一样,又与js(JavaScript)相似,但是也不一样,所以我认为c#是Java和 js的孩子. 2.常量定义 字符串: const string = &quo ...

  10. JDBC 处理sql查询多个不确定参数

    JDBC程序,为了防止SQL注入,通常需要进行参数化查询,但是如果存在多个不确定参数,就比较麻烦了,查阅了一些资料,最后解决了这个问题,现在这里记录一下:   public List<TabDl ...