一、YOLO-v4概念

如果想要了解和认识yolo-v4的基本概念,首先要提的就是它的基础版本yolo-v1,对于yolo来说,最经典的算是yolo-v3。如果想要了解它的由来和历史的话,可以自行搜索。那么接下来,就先从yolo-v1入手各方面来介绍对比一下yolo-v4。

1、yolo-v1结构设计

原论文地址:https://tuzishenshi.lanzoui.com/iMMu2s92w4f

图1、网络结构图

yolov1网络结构图是由24个卷积层、2个全连接层构成,其作者也说过灵感来自用于图像分类的GoogLeNet模型,但是与GoogLeNet模型不同的是简单的使用了1×1简化层和3×3卷积层(类似M. Lin, Q. Chen, and S. Y an. Network in network. CoRR,abs/1312.4400, 2013. 2),可以在上图看到。

输入的图像为448448,经过以上的结构,输出的为77*1024的张量,是第7个图样。在激活函数上,最后一层输出时用了线性激活函数,其余层都使用的是Leaky Relu激活函数。

图2、Leaky Relu激活函数

YOLO相对于其他的(例如rcnn、fast-rcnn、faster-rcnn等)来说,它的优势就是YOLO设计实现了端到端的培训和实时速度,同时保持了较高的平均精度。具体的话就是将目标检测的各个部分统一为一个单一的神经网络,网络使用整个图像的特征来预测每个边界框。它还可以同时预测图像中所有类的所有边框。这意味着我们的网络对完整的图像和图像中的所有对象进行全局推理。

2、yolo-v1损失函数

图3、损失函数

3、yolo-v1和yolo-v4对比

yolo-v4说简单点就是对yolo-v3的改进,它的改进方法就是总结了几乎所有的检测技巧,又提出一点儿技巧,然后经过筛选,排列组合,挨个实验(ablation study)哪些方法有效。YOLOv4对深度学习中一些常用Tricks进行了大量的测试,最终选择了这些有用的Tricks:WRC、CSP、CmBN、SAT、 Mish activation、Mosaic data augmentation、CmBN、DropBlock regularization 和 CIoU loss。

YOLOv4在传统的YOLO基础上,加入了这些实用的技巧,实现了检测速度和精度的最佳权衡。实验表明,在Tesla V100上,对MS COCO数据集的实时检测速度达到65 FPS,精度达到43.5%AP。

二、yolo-v4源码

这个是从网络收集而来,自己已经跑通了,里面也有一些使用的方法,也就不啰嗦了,可以自己研究一下,跑一下口罩识别。

链接地址: https://pan.baidu.com/s/1ziNPRznNcfdGMCKWtB4xYQ 提取码: e939

三、口罩数据

我这里整理了一些数据集,一共有三个、我跑的是yolov4的第二个数据集。我会标注,可以先用我跑的这个,因为我跑通了。

链接地址:https://pan.baidu.com/s/1G1XLjK8Y3WNbRSf-1dwVgA 提取码: vvhv

四、处理数据

1、批量移动(删除)某格式的文件【父目录下所有文件】

 1 import os
2 import shutil
3
4 for parent, dirnames, filenames in os.walk('原目录'):
5 for fn in filenames:
6
7 if fn.lower().endswith('.xml'):
8 # os.remove(os.path.join(parent, fn)) ##这是删除文件的语句
9 shutil.copy(os.path.join(parent, fn),'目标目录') #这是移动的语句
10
11 #目录例子 D:\\学习文件\\YOLO\\数据\\xml (注意:双斜杠)

2、批量更改目录下某格式文件的名字【父目录下所有文件】

 1 import os
2
3
4 class BatchRenamePics(object):
5 """
6 批量命名目录下的所有图名[.jpg,.png]
7 命名格式:1-1,1-2...2-1,2-2...10-1,10-2...eg
8 """
9 def __init__(self, path):
10 # 设置起始路径path
11 self.path = path
12
13 def rename(self):
14 allfile = os.walk(self.path)
15 # j用于计数,统计有多少张照片被重命名
16 j = 0
17 # 遍历每一层目录,从上到下的顺序
18 for dirpath, dirnames, filenames, in allfile:
19 # 得到当前文件夹的名字tail
20 tail = os.path.split(dirpath)[1]
21 # i用于命名
22 i = 0
23 # 遍历filenames中的每一个文件
24 for each in filenames:
25 # 如果文件名是以.jpg或者.png结尾则认为是图片,可以自己添加其他格式的照片
26 if each.endswith('.jpg') or each.endswith('.png')or each.endswith('.xml'):
27 i += 1
28 j += 1
29 # 拼接完整的包含路径的文件名
30 scr = os.path.join(dirpath, each)
31 # 拼接新的完整的包含路径的文件名, tail是文件夹的名字
32 # dst = os.path.join(dirpath, tail + '-' + str(i) + '.jpg') ##这个是文件改格式
33 dst = os.path.join(dirpath, str(j) + '.jpg')
34 try:
35 # 重命名图片文件
36 os.rename(scr, dst)
37 print(scr + '--->' + dst)
38 except:
39 continue
40 else:
41 continue
42 print('累计重命名{}张图片'.format(j))
43
44 if __name__ == '__main__':
45 # 设置起始路径path
46 path = r'原目录'
47 # 创建实例对象
48 pics = BatchRenamePics(path)
49 # 调用实例方法
50 pics.rename()

最后,感谢大家对本文章的阅读,如果有什么问题,欢迎在下方留言,一起讨论,共同进步。

YOLO-V4 实现口罩识别(附加数据、数据批量处理程序)的更多相关文章

  1. opencv face-detection 代码分析 (1)人脸识别后的数据

    2014,3,16   老师的工作建议如下:   1. 与四民沟通下,把openCV这边的源代码和调用接口发给四民同时抄送给我. 2. 根据openCV的实时检测结果,实现对屏幕的调整(下周一前基本实 ...

  2. 风险识别系统-大数据智能风控管理平台-企业风控解决方案– 阿里云 https://www.aliyun.com/product/saf

    风险识别系统-大数据智能风控管理平台-企业风控解决方案– 阿里云 https://www.aliyun.com/product/saf

  3. YOLO v1到YOLO v4(下)

    YOLO v1到YOLO v4(下) Faster YOLO使用的是GoogleLeNet,比VGG-16快,YOLO完成一次前向过程只用8.52 billion 运算,而VGG-16要30.69bi ...

  4. YOLO v1到YOLO v4(上)

    YOLO v1到YOLO v4(上) 一.  YOLO v1 这是继RCNN,fast-RCNN和faster-RCNN之后,rbg(RossGirshick)针对DL目标检测速度问题提出的另外一种框 ...

  5. YOLO-v4 口罩识别

    YOLO-v4 口罩识别 一.YOLO-v4概念 如果想要了解和认识yolo-v4的基本概念,首先要提的就是它的基础版本yolo-v1,对于yolo来说,最经典的算是yolo-v3.如果想要了解它的由 ...

  6. YOLO v4分析

    YOLO v4分析 YOLO v4 的作者共有三位:Alexey Bochkovskiy.Chien-Yao Wang 和 Hong-Yuan Mark Liao.其中一作 Alexey Bochko ...

  7. YOLO V4的模型训练

    1.YOLO V4模型训练的基本思路 所有机器学习涉及模型训练,一般都有训练集.验证集.测试集,因此需要准备数据集.有了数据集,再调用训练的算法,获取训练的结果.v3.v4模型训练方法相同. 2.YO ...

  8. HBase 高性能获取数据(多线程批量式解决办法) + MySQL和HBase性能测试比较

    摘要:   在前篇博客里已经讲述了通过一个自定义 HBase Filter来获取数据的办法,在末尾指出此办法的性能是不能满足应用要求的,很显然对于如此成熟的HBase来说,高性能获取数据应该不是问题. ...

  9. YOLO V4 :win10+cpu环境的体验

    1.前言 Yolo V3已经体验了,接下来是V4版本. 关于V4版本,学术界褒贬不一.从工业界实际应用角度看,V4做了不少的优化,精度提升了10%,速度提升了12%.详细参见: <如何评价新出的 ...

随机推荐

  1. redis学习第一天

    不同于其他的常用关系型数据库,redis是一个非常轻便,体积小,存放键值对的数据库,常用于构建高性能,可扩展的Web应用程序. 这是我第一次接触redis,之前没有使用过,只听说过.因为刚毕业,找工作 ...

  2. 案例 | 腾讯广告 AMS 的容器化之路

    作者 张煜,15年加入腾讯并从事腾讯广告维护工作.20年开始引导腾讯广告技术团队接入公司的TKEx-teg,从业务的日常痛点并结合腾讯云原生特性来完善腾讯广告自有的容器化解决方案 项目背景 腾讯广告承 ...

  3. SSM动态展示分页

    这个作业属于哪个课程 2021春软件工程实践|S班(福州大学) 这个作业要求在哪里 作业具体要求 这个作业的目标 个人技术 参考文献 ... 目录 技术概述 技术详述 问题和解决过程 总结 参考文献 ...

  4. WEB安全新玩法 [5] 防范水平越权之查看他人订单信息

    水平越权是指系统中的用户在未经授权的情况下,查看到另一个同级别用户所拥有的资源.水平越权会导致信息泄露,其产生原因是软件业务设计或编码上的缺陷.iFlow 业务安全加固平台可以缓解部分场景下的水平越权 ...

  5. Golang限制函数调用次数

    Golang限制函数调用次数 项目环境 ubuntu+go1.14 需求描述 限制某个函数5秒内只能调用一次,5秒内的其他调用抛弃 工具包使用 这里用到了官方限流器/time/rate 该限流器是基于 ...

  6. Bert模型实现垃圾邮件分类

    近日,对近些年在NLP领域很火的BERT模型进行了学习,并进行实践.今天在这里做一下笔记. 本篇博客包含下列内容: BERT模型简介 概览 BERT模型结构 BERT项目学习及代码走读 项目基本特性介 ...

  7. 01 JumpServer安装

    1.0.环境说明: 操作系统类型 主机名称 用户及密码 角色 eth0(Vmnet8) eth1(Vmnet1) 防火墙状态 selinux centos7.4 controlnode root:12 ...

  8. LCA总结

    作为一名合格的 OIer ,一定要有自我总结的意识,一定要通过写博客的方式来验证自己的掌握程度 ----沃.茨基硕德 目录 作为一名合格的 OIer ,一定要有自我总结的意识,一定要通过写博客的方式来 ...

  9. css图片显示文字(上浮)

    <html> <head lang="en"> <meta charset="UTF-8"> <title>&l ...

  10. Defense:SMB协议漏洞利用与控制CVE-2017-7494("永恒之蓝")攻防实验

    漏洞描述 1. 服务器打开了文件/打印机共享端口445,让其能够在公网上访问 2. 共享文件拥有写入权限 3. 恶意攻击者需猜解Samba服务端共享目录的物理路径 Samba是在Linux和UNIX系 ...