http://blog.csdn.net/acdreamers/article/details/18507767

这个是位图的链接,这篇写的挺好。

模板:

 1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 using namespace std;
11 typedef long long LL;
12 typedef unsigned long long ll;
13 int cmp(const void*p,const void*q);
14 const int N=1e8;
15 const int M=5;
16 const int V=(1<<M)-1;
17 int prime[(N>>M)+4]= {0};
18 void setbit(LL x)
19 {
20 prime[x>>M]|=1<<(x&(V));
21 }
22 bool getbit(LL x)
23 {
24 return prime[x>>M]&(1<<(x&V));
25 }
26 int kp[7000000];
27 int main(void)
28 {
29 int i,j,k;LL p;
30 for(i=2; i<=20000; i++)
31 {
32 if(!getbit(i))
33 {
34 for(j=i; i*j<=100000000; j++)
35 {
36 setbit(i*j);
37 }
38 }
39 }int ans=0;
40 for(i=2;i<=100000000;i++)
41 {
42 if(!getbit(i))
43 {
44 kp[ans++]=i;
45 }
46 }
47 return 0;
48 }
1289 - LCM from 1 to n
Time Limit: 4 second(s) Memory Limit: 64 MB

Given an integer n, you have to find

lcm(1, 2, 3, ..., n)

lcm means least common multiple. For example lcm(2, 5, 4) = 20, lcm(3, 9) = 9, lcm(6, 8, 12) = 24.

Input

Input starts with an integer T (≤ 10000), denoting the number of test cases.

Each case starts with a line containing an integer n (2 ≤ n ≤ 108).

Output

For each case, print the case number and lcm(1, 2, 3, ..., n). As the result can be very big, print the result modulo 232.

Sample Input

Output for Sample Input

5

10

5

200

15

20

Case 1: 2520

Case 2: 60

Case 3: 2300527488

Case 4: 360360

Case 5: 232792560


Problem Setter: Jane Alam Jan
思路:
有个定理
这个是如果n+1是素数的次方,那么当前的L(1+n)=L(n)*p,p为素数,否则就是L(n);
这个很好理解,如过n+1=(p)k,我们从最小公倍数的定义:Lcm=max(a1,a2,a3....)*max(b1,b2,b3...)*max(c1,c2,c3...)*....
其中a1是A1的某个素因数的个数,a2是A2的某个素因数的个数(这两个素因数相同).....
这样我们知道p这个素因数,在n时最大为k-1,所以当到n+1时就有L(n+1)=L(n)*p;否则的话如果n+1不是某个素数的次方那么代表着已经出现的所有素数的最大个数未被更新
那么就有L(n+1)=L(n);所以我们将【2,1e8】的素数全部筛选出来,由于内存限制所以只能用位图来筛选。
这样筛好后,然后我们把<=(1e8)的素数的次方打表出来,然后排序,这样再打表下到每个素数次方时(1,pk)的LCM;然后每次查找二分就行。
  1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 #include<queue>
11 using namespace std;
12 typedef long long LL;
13 typedef unsigned long long ll;
14 const int N=1e8+2;
15 const int M=5;
16 const int V=(1<<M)-1;
17 const LL mod=4294967296;
18 typedef struct node
19 {
20 unsigned int id;
21 unsigned int NN;
22
23 } ss; bool cmp( struct node p,struct node q)
24 {
25 return p.NN<q.NN?true:false;
26 }
27 ss io[6000000];
28 int prime[(N>>M)+4]= {0};
29 void setbit(LL x)
30 {
31 prime[x>>M]|=1<<(x&(V));
32 }
33 bool getbit(LL x)
34 {
35 return prime[x>>M]&(1<<(x&V));
36 }
37 int er(int n,int m,int ans,int t);
38 int main(void)
39 {
40 int i,j,k;LL p;
41 for(i=2; i<=20000; i++)
42 {
43 if(!getbit(i))
44 {
45 for(j=i; i*j<=100000000; j++)
46 {
47 setbit(i*j);
48 }
49 }
50 }
51 int ans=0;
52 int cns=0;
53 for(i=2; i<100000000; i++)
54 {
55 if(!getbit(i))
56 {
57 LL sum=i;ans++;
58 while(sum<=N)
59 {
60 io[cns].id=i;
61 io[cns++].NN=sum;
62 sum*=i;
63 }
64 }
65 }sort(io,io+cns,cmp);
66 for(i=1;i<cns;i++)
67 {
68 io[i].id=(io[i-1].id*io[i].id)%mod;
69 }//freopen("data.in","r",stdin);
70 //freopen("wrong.out","w",stdout);
71 scanf("%d",&k);
72 int s;
73 for(s=1; s<=k; s++)
74 {
75 scanf("%lld",&p);printf("Case %d: ",s);
76 {int l,r;
77 l=0;
78 r=cns-1;
79 int ak=0;
80 int uu;
81 while(l<=r)
82 {
83 int c=(l+r)>>1;
84 if(io[c].NN<=p)
85 {
86 ak=c;
87 l=c+1;
88 }
89 else
90 r=c-1;
91 }
92 unsigned int sum1=io[ak].id;
93 printf("%u\n",sum1);}
94 }
95 return 0;
96 }
97 int er(int n,int m,int ans,int t)
98 { int l=(n+m)/2;if(l<0)return -1;
99 if(io[l].NN==ans)
100 {
101 return l;
102 }
103
104 if(io[l-1].NN<ans&&io[l].NN>ans)
105 {
106 return l-1;
107 } else if(n==m&&m==t)
108 return m;
109 else if(n==m)
110 return n-1;
111 else if(io[l-1].NN>=ans&&io[l].NN>ans)
112 {
113 return er(n,l-1,ans,t);
114 }
115 else if(io[l-1].NN<ans&&io[l].NN<ans)
116 {
117 return er(l+1,m,ans,t);
118 }
119 }

我这里两种二分,下面函数式的比较难把喔,写起来很恶心。

1289 - LCM from 1 to n的更多相关文章

  1. LightOj 1289 - LCM from 1 to n(LCM + 素数)

    题目链接:http://lightoj.com/volume_showproblem.php?problem=1289 题意:求LCM(1, 2, 3, ... , n)%(1<<32), ...

  2. Light 1289 - LCM from 1 to n (位图标记+素数筛选)

    题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1289 题目描述: 给出一个n,求出lcm(1,2,3......n)为多少? ...

  3. LightOJ 1289 LCM from 1 to n(位图标记+素数筛

    https://vjudge.net/contest/324284#problem/B 数学水题,其实就是想写下位图..和状压很像 题意:给n让求lcm(1,2,3,...,n),n<=1e8 ...

  4. LCM性质 + 组合数 - HDU 5407 CRB and Candies

    CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...

  5. CodeBlocks及LCM应用

    以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...

  6. LCM 轻量级通信组件

    LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...

  7. uva12546. LCM Pair Sum

    uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...

  8. UVA 10791 Minimum Sum LCM(分解质因数)

    最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...

  9. LCM在Kernel中的代码分析

    lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...

随机推荐

  1. ysoserial-CommonsBeanutils1的shiro无依赖链改造

    ysoserial-CommonsBeanutils1的shiro无依赖链改造 一.CB1利用链分析 此条利用链需要配合Commons-Beanutils组件来进行利用,在shiro中是自带此组件的. ...

  2. 振鹏学习Java的第二天!

    一.今日收获 1.了解了eclipse的具体使用方法. 2.学习了Java程序设计完全手册的第一章内容,明白了相关知识. 3.通过看哔哩哔哩的java的教程视频了解了Dos命令及java的变量和常量. ...

  3. day16 循环导入、模块搜索路径、软件开发、包的使用

    day16 循环导入.模块搜索路径.软件开发.包的使用 1.循环导入 循环导入:循环导入问题指的是在一个模块加载/导入的过程中导入另外一个模块,而在另外一个模块中又返回来导入第一个模块中的名字,由于第 ...

  4. 启动spark-shell --master yarn的bug

    报错如下 18/06/06 15:55:31 ERROR cluster.YarnClientSchedulerBackend: Yarn application has already exited ...

  5. Flume对接Kafka

    目录 一.简单实现 1)flume的配置文件 二.自定义interceptor(使用kafka sink) 1)自定义 flume 拦截器 2)编写 flume 的配置文件 3)创建topic 4)启 ...

  6. 【原创】Altium生成Gerber时跳出The Film is too small for this PCB的解决办法

    在用altium Designer画板子的时候,要生成gerber文件的时候,会出错,出现这样的提示框:"The Film is too small for this PCB" 原 ...

  7. RAC(Reactive Cocoa)常见的类

    导入ReactiveCocoa框架 在终端,进入Reactive Cocoa文件下 创建podfile 打开该文件 并配置 use_frameworks! pod 'ReactiveCocoa', ' ...

  8. VUE页面实现加载外部HTML方法

    前后端分离,后端提供了接口.但有一部分数据,比较产品说明文件,是存在其他的服务器上的.所以,在页面显示的时候,如果以页面内嵌的形式显示这个说明文件.需要搞点事情以达到想要的效果.本文主要和大家介绍VU ...

  9. 1.ElasticSearch相关概念

    1.为ElasticSearch设置跨域访问 http.cors.enabled: truehttp.cors.allow-origin: "*" 2.什么是ElasticSear ...

  10. Apache Hudi 与 Hive 集成手册

    1. Hudi表对应的Hive外部表介绍 Hudi源表对应一份HDFS数据,可以通过Spark,Flink 组件或者Hudi客户端将Hudi表的数据映射为Hive外部表,基于该外部表, Hive可以方 ...