1289 - LCM from 1 to n
http://blog.csdn.net/acdreamers/article/details/18507767
这个是位图的链接,这篇写的挺好。
模板:
1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 using namespace std;
11 typedef long long LL;
12 typedef unsigned long long ll;
13 int cmp(const void*p,const void*q);
14 const int N=1e8;
15 const int M=5;
16 const int V=(1<<M)-1;
17 int prime[(N>>M)+4]= {0};
18 void setbit(LL x)
19 {
20 prime[x>>M]|=1<<(x&(V));
21 }
22 bool getbit(LL x)
23 {
24 return prime[x>>M]&(1<<(x&V));
25 }
26 int kp[7000000];
27 int main(void)
28 {
29 int i,j,k;LL p;
30 for(i=2; i<=20000; i++)
31 {
32 if(!getbit(i))
33 {
34 for(j=i; i*j<=100000000; j++)
35 {
36 setbit(i*j);
37 }
38 }
39 }int ans=0;
40 for(i=2;i<=100000000;i++)
41 {
42 if(!getbit(i))
43 {
44 kp[ans++]=i;
45 }
46 }
47 return 0;
48 }
Time Limit: 4 second(s) | Memory Limit: 64 MB |
Given an integer n, you have to find
lcm(1, 2, 3, ..., n)
lcm means least common multiple. For example lcm(2, 5, 4) = 20, lcm(3, 9) = 9, lcm(6, 8, 12) = 24.
Input
Input starts with an integer T (≤ 10000), denoting the number of test cases.
Each case starts with a line containing an integer n (2 ≤ n ≤ 108).
Output
For each case, print the case number and lcm(1, 2, 3, ..., n). As the result can be very big, print the result modulo 232.
Sample Input |
Output for Sample Input |
5 10 5 200 15 20 |
Case 1: 2520 Case 2: 60 Case 3: 2300527488 Case 4: 360360 Case 5: 232792560 |
1 #include<math.h>
2 #include<stdlib.h>
3 #include<stdio.h>
4 #include <algorithm>
5 #include<iostream>
6 #include<string.h>
7 #include<vector>
8 #include<map>
9 #include<math.h>
10 #include<queue>
11 using namespace std;
12 typedef long long LL;
13 typedef unsigned long long ll;
14 const int N=1e8+2;
15 const int M=5;
16 const int V=(1<<M)-1;
17 const LL mod=4294967296;
18 typedef struct node
19 {
20 unsigned int id;
21 unsigned int NN;
22
23 } ss; bool cmp( struct node p,struct node q)
24 {
25 return p.NN<q.NN?true:false;
26 }
27 ss io[6000000];
28 int prime[(N>>M)+4]= {0};
29 void setbit(LL x)
30 {
31 prime[x>>M]|=1<<(x&(V));
32 }
33 bool getbit(LL x)
34 {
35 return prime[x>>M]&(1<<(x&V));
36 }
37 int er(int n,int m,int ans,int t);
38 int main(void)
39 {
40 int i,j,k;LL p;
41 for(i=2; i<=20000; i++)
42 {
43 if(!getbit(i))
44 {
45 for(j=i; i*j<=100000000; j++)
46 {
47 setbit(i*j);
48 }
49 }
50 }
51 int ans=0;
52 int cns=0;
53 for(i=2; i<100000000; i++)
54 {
55 if(!getbit(i))
56 {
57 LL sum=i;ans++;
58 while(sum<=N)
59 {
60 io[cns].id=i;
61 io[cns++].NN=sum;
62 sum*=i;
63 }
64 }
65 }sort(io,io+cns,cmp);
66 for(i=1;i<cns;i++)
67 {
68 io[i].id=(io[i-1].id*io[i].id)%mod;
69 }//freopen("data.in","r",stdin);
70 //freopen("wrong.out","w",stdout);
71 scanf("%d",&k);
72 int s;
73 for(s=1; s<=k; s++)
74 {
75 scanf("%lld",&p);printf("Case %d: ",s);
76 {int l,r;
77 l=0;
78 r=cns-1;
79 int ak=0;
80 int uu;
81 while(l<=r)
82 {
83 int c=(l+r)>>1;
84 if(io[c].NN<=p)
85 {
86 ak=c;
87 l=c+1;
88 }
89 else
90 r=c-1;
91 }
92 unsigned int sum1=io[ak].id;
93 printf("%u\n",sum1);}
94 }
95 return 0;
96 }
97 int er(int n,int m,int ans,int t)
98 { int l=(n+m)/2;if(l<0)return -1;
99 if(io[l].NN==ans)
100 {
101 return l;
102 }
103
104 if(io[l-1].NN<ans&&io[l].NN>ans)
105 {
106 return l-1;
107 } else if(n==m&&m==t)
108 return m;
109 else if(n==m)
110 return n-1;
111 else if(io[l-1].NN>=ans&&io[l].NN>ans)
112 {
113 return er(n,l-1,ans,t);
114 }
115 else if(io[l-1].NN<ans&&io[l].NN<ans)
116 {
117 return er(l+1,m,ans,t);
118 }
119 }
我这里两种二分,下面函数式的比较难把喔,写起来很恶心。
1289 - LCM from 1 to n的更多相关文章
- LightOj 1289 - LCM from 1 to n(LCM + 素数)
题目链接:http://lightoj.com/volume_showproblem.php?problem=1289 题意:求LCM(1, 2, 3, ... , n)%(1<<32), ...
- Light 1289 - LCM from 1 to n (位图标记+素数筛选)
题目链接: http://www.lightoj.com/volume_showproblem.php?problem=1289 题目描述: 给出一个n,求出lcm(1,2,3......n)为多少? ...
- LightOJ 1289 LCM from 1 to n(位图标记+素数筛
https://vjudge.net/contest/324284#problem/B 数学水题,其实就是想写下位图..和状压很像 题意:给n让求lcm(1,2,3,...,n),n<=1e8 ...
- LCM性质 + 组合数 - HDU 5407 CRB and Candies
CRB and Candies Problem's Link Mean: 给定一个数n,求LCM(C(n,0),C(n,1),C(n,2)...C(n,n))的值,(n<=1e6). analy ...
- CodeBlocks及LCM应用
以下是在开发过程中遇到的一些细节点: 1)called after throwing an instance of std::bad_alloc 此问题是由于publish(data),当中data赋 ...
- LCM 轻量级通信组件
LCM和ZMQ比较 http://www.doc88.com/p-6711552253536.html 基于LCM和ZeroMQ的进程间通信研究 2.简介 LCM(Lightweight Commuc ...
- uva12546. LCM Pair Sum
uva12546. LCM Pair Sum One of your friends desperately needs your help. He is working with a secret ...
- UVA 10791 Minimum Sum LCM(分解质因数)
最大公倍数的最小和 题意: 给一个数字n,范围在[1,2^23-1],这个n是一系列数字的最小公倍数,这一系列数字的个数至少为2 那么找出一个序列,使他们的和最小. 分析: 一系列数字a1,a2,a3 ...
- LCM在Kernel中的代码分析
lcm的分析首先是mtkfb.c 1.mtk_init中platform_driver_register(&mtkfb_driver)注册平台驱动 panelmaster_init(); DB ...
随机推荐
- ysoserial-CommonsBeanutils1的shiro无依赖链改造
ysoserial-CommonsBeanutils1的shiro无依赖链改造 一.CB1利用链分析 此条利用链需要配合Commons-Beanutils组件来进行利用,在shiro中是自带此组件的. ...
- c/c++在线编译Output Limit Exceeded(OLE)错误
提示输出错误,有如下两个可能情况: 1. 不符合题目给出的输出格式,自己输出了多余的内容或者格式不正确 2. 输入数据的时候,未考虑到输入错误的情况 针对2,有如下的例子: 错误的情况: 1 int ...
- Java项目发现==顺手改成equals之后,会发生什么?
最近发生一件很尴尬的事情,在维护一个 Java 项目的时候,发现有使用 == 来比较两个对象的属性, 于是顺手就把 == 改成了 equals.悲剧发生...... == 和 equals 的区别 = ...
- Linux 【复习巩固】
目录 一.网络和服务 1.查看ip 2.查看主机名 配置 3.临时服务 1)基本语法(CentOS 6) 2)基本语法(CentOS 7) 3)示例 4.开机自启动服务 1)基本语法(CentOS 6 ...
- Vue 之keep-alive的使用,实现页面缓存
什么是keep-alive 有时候我们不希望组件被重新渲染影响使用体验: 或者处于性能考虑,避免多次重复渲染降低性能.而是希望组件可以缓存下来,维持当前的状态.这时候就需要用到keep-alive组件 ...
- css通配样式初始化(多款,供君自选)
腾讯官网 body,ol,ul,h1,h2,h3,h4,h5,h6,p,th,td,dl,dd,form,fieldset,legend,input,textarea,select{margin:0; ...
- Vue API 3 (模板语法 ,指令)
条件 v-if v-if 指令用于条件性地渲染一块内容.这块内容只会在指令的表达式返回 truthy 值的时候被渲染. v-show v-show 指令也是用于根据条件展示一块内容.v-show 只是 ...
- Java资源下载
tomcat http://mirror.bit.edu.cn/apache/tomcat/tomcat-8/v8.5.49/bin/apache-tomcat-8.5.49.tar.gz s ...
- jquery对radio和checkbox的操作
jQuery获取Radio选择的Value值 代码 $("input[name='radio_name'][checked]").val(); //选择被选中Radio的Valu ...
- Spring事务隔离级别和传播特性(转)
相信每个人都被问过无数次Spring声明式事务的隔离级别和传播机制吧!今天我也来说说这两个东西. 加入一个小插曲,一天电话里有人问我声明式事务隔离级别有哪几种,我就回答了7种,他问我Spring的版本 ...