阿克曼函数(Ackermann)是非原始递归函数的例子。它需要两个自然数作为输入值,输出一个自然数。它的输出值增长速度非常快,仅是对于(4,3)的输出已大得不能准确计算。

\[A(m, n)=\left\{\begin{array}{ll}{n+1} & {m=0} \\ {A(m-1,1)} & {m>0, n=0} \\ {A(m-1, A(m, n-1))} & {m>0, n>0}\end{array}\right.
\]

因为\(m\)很小,所以我们可以针对\(0\leq m \leq 3\)来对阿克曼函数进行推导

对于阿克曼函数的具体推导过程如下:

  • 当\(m=0\)时:
\[A(0, n)=n+1
\]
  • 当\(m=1\)时:
\[\begin{aligned} A(1, n) &=A(0, A(1, n-1))=A(1, n-1)+1 \\ &=A(0, A(1, n-2))=A(1, n-2)+2 \\ &=A(0, n-3)+3 \\ & \cdots \\ &=A(1,0)+n \\ &=A(0,1)+n \\ &=n+2 \end{aligned}
\]
  • 当\(m=2\)时:
\[\begin{aligned} A(2, n) &=A(1, A(2, n-1))=A(2, n-1)+2 \\ &=A(1, A(2, n-2))+2 \\ &=A(2, n-2)+2 \times 2 \\ & \cdots \\ &=A(2,0)+2 \times n \\ &=A(1,1)+2 \times n \\ &=3+2 \times n \end{aligned}
\]
  • 当\(m=3\)时:
\[\begin{aligned} A(3, n) &=A(2, A(3, n-1)) \\ &=A(3, n-1) \times 2+3 \\ &=A(2, A(3, n-2)) \times 2+3 \\ &=(A(3, n-2) \times 2+3) \times 2+3 \\ &=2 \times 2 \times A(3, n-2)+2 \times 3+3 \\ &=2 \times 2 \times A(3, n-2)+2 \times 3+3 \\ &=2 \times 2 \times(A(3, n-2)+2 \times 3+3) \\ &=2 \times 2 \times(A(3, n-3) \times 2+3)+2 \times 3+3 \\ &=2^{n} \times A(2,1)+3 \times\left(2^{n}-1\right) \\ &=2^{n} \times 5+2^{n} \times 3-3 \\ &=2^{n+3}-3 \end{aligned}
\]

阿克曼函数推导过程(m<=3)的更多相关文章

  1. BP神经网络推导过程详解

    BP算法是一种最有效的多层神经网络学习方法,其主要特点是信号前向传递,而误差后向传播,通过不断调节网络权重值,使得网络的最终输出与期望输出尽可能接近,以达到训练的目的. 一.多层神经网络结构及其描述 ...

  2. 1029 C语言文法定义与C程序的推导过程

    1 阅读并理解提供给大家的C语言文法文件. 2 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 3 给出一段C程序,写出用上述文法产生这段C程序的推导过程. program → exte ...

  3. 吴恩达深度学习第1课第4周-任意层人工神经网络(Artificial Neural Network,即ANN)(向量化)手写推导过程(我觉得已经很详细了)

    学习了吴恩达老师深度学习工程师第一门课,受益匪浅,尤其是吴老师所用的符号系统,准确且易区分. 遵循吴老师的符号系统,我对任意层神经网络模型进行了详细的推导,形成笔记. 有人说推导任意层MLP很容易,我 ...

  4. XGBoost 完整推导过程

    参考: 陈天奇-"XGBoost: A Scalable Tree Boosting System" Paper地址: <https://arxiv.org/abs/1603 ...

  5. 关于opengl中的矩阵平移,矩阵旋转,推导过程理解 OpenGL计算机图形学的一些必要矩阵运算知识

    原文作者:aircraft 原文链接:https://www.cnblogs.com/DOMLX/p/12166896.html 为什么引入齐次坐标的变换矩阵可以表示平移呢? - Yu Mao的回答 ...

  6. [ML从入门到入门] 支持向量机:从SVM的推导过程到SMO的收敛性讨论

    前言 支持向量机(Support Vector Machine,SVM)在70年代由苏联人 Vladimir Vapnik 提出,主要用于处理二分类问题,也就是研究如何区分两类事物. 本文主要介绍支持 ...

  7. 1014 C语言文法定义与C程序的推导过程 程序:冒泡算法C程序(语法树)

    阅读并理解提供给大家的C语言文法文件. 参考该文件写出一个自己好理解版的现实版的完整版的C语言文法. 给出一段C程序,画出用上述文法产生这段C程序的完整语法树. 程序:冒泡算法C程序 点此文字查看原图 ...

  8. PL/SQL --> 动态SQL调用包中函数或过程

    动态SQL主要是用于针对不同的条件或查询任务来生成不同的SQL语句.最常用的方法是直接使用EXECUTE IMMEDIATE来执行动态SQL语句字符串或字符串变量.但是对于系统自定义的包或用户自定的包 ...

  9. .Net程序员学用Oracle系列(7):视图、函数、过程、包

    <.Net程序员学用Oracle系列:导航目录> 本文大纲 1.视图 1.1.创建视图 2.函数 2.1.创建函数 2.2.调用函数 3.过程 3.1.创建过程 3.2.调用过程 4.包 ...

随机推荐

  1. [转]C++中const的使用

    原文链接:http://www.cnblogs.com/xudong-bupt/p/3509567.html 平时在写C++代码的时候不怎么注重const的使用,长久以来就把const的用法忘记了 写 ...

  2. JS - 获取当前的时间,并且转换成年 - 月 - 日格式!

    先获取当前时间,并转换成年月日格式! function getNowFormatDate() { var date = new Date(); var seperator1 = "-&quo ...

  3. 【Java 8】Stream通过reduce()方法合并流为一条数据示例

    在本页中,我们将提供 Java 8 Stream reduce()示例. Stream reduce()对流的元素执行缩减.它使用恒等式和累加器函数进行归约. 在并行处理中,我们可以将合并器函数作为附 ...

  4. 【C/C++】例题 4-2 刽子手游戏/算法竞赛入门经典/函数和递归

    [题目] 猜单词游戏. 计算机想一个单词让你猜,你每次猜一个字母. 如果单词里有那个[字母],[所有该字母会显示出来]. 如果没有那个字母,算猜错一次.[最多只能猜错六次] 猜一个已经猜过的字母也算错 ...

  5. .net core Winform 添加DI和读取配置、添加log

    首先新建配置类 public class CaptureOption { /// <summary> /// 是否自启 /// </summary> public bool A ...

  6. 什么是token?

    一.简介 token的意思是"令牌",是服务端生成的一串字符串,作为客户端进行请求的一个标识. 当用户第一次登录后,服务器生成一个token并将此token返回给客户端,以后客户端 ...

  7. pipeline是什么?

    目录 一.pipeline是什么? 二.jenkinsfile是什么 三.pipeline语法选择 四.脚本式和声明式 五.插件与pipeline 一.pipeline是什么? pipeline是部署 ...

  8. Jenkins配置java项目

    目录 一.场景介绍 二.项目配置 配置插件 配置项目 一.场景介绍 在部署完Jenkins后,需要将现有的maven项目(Jenkis的开源插件),放到Jenkins上,用于自动化运维的改造. 项目地 ...

  9. inode节点

    目录 一.简介 二.信息 inode的内容 inode的大小 3.inode号码 三.目录文件 四.硬连接 五.软链接 六.inode的特殊作用 一.简介 理解inode,要从文件储存说起. 文件储存 ...

  10. VirtualBox 同时添加 NAT 和 Host-Only 网卡出现无法上网的情况

    如果网卡1是 NAT,网卡2是 Host-Only,可以 ping 通 baidu.com. 如果网卡1是 Host-Only,网卡2是 NAT,无法 ping 通 baidu.com. 使用 nmc ...