DFT, DHT, DCT, DST
Gonzalez R. C. and Woods R. E. Digital Image Processing (Forth Edition)
基本
酉变换
一维的变换:
\mathbf{f} = \mathbf{A}^{H} \mathbf{t}, \\
\mathbf{A}^H = {\mathbf{A}^*}^{T}, \mathbf{A}^H\mathbf{A} = \mathbf{I}.
\]
以及二维的变换:
\mathbf{F} = \mathbf{A}^H \mathbf{T} \mathbf{B}^*, \\
\mathbf{A}^H\mathbf{A=I}, \mathbf{B}^{T}\mathbf{B}^* =\mathbf{I}.
\]
以一维的为例, 实际上就是
\mathbf{s}_u = [s(0, u), s(1, u), \cdots, s(N-1, u)]^T.
\]
故
\]
others
\]
proof:
2\sin (\frac{x}{2}) \sum_{k=0}^n \sin (kx)
&=\sum_{k=0}^n [\cos (\frac{2k-1}{2}x) -\cos (\frac{2k+1}{2}x) ]\\
&= \cos(\frac{1}{2}x) - \cos (\frac{2n+1}{2}x).
\end{array}
\]
类似地
\]
proof:
2\sin (\frac{x}{2}) \sum_{k=0}^n \cos (kx)
&=\sum_{k=0}^n [\sin (\frac{2k+1}{2}x) -\sin (\frac{2k-1}{2}x) ]\\
&= \sin(\frac{2k+1}{2}x) + \sin (\frac{1}{2}x).
\end{array}
\]
Fourier-related Transforms
DFT
\]
\(\mathbf{s}_u^H \mathbf{s}_u = 1\)是显然的, 又注意到
\]
又
\]
由于
\]
DHT
DISCRETE HARTLEY TRANSFORM
\]
\cos (\frac{2\pi u'x}{N})
=\cos (\frac{2\pi (u-u')x}{N})
+\cos (\frac{2\pi (u+u')x}{N}) \\
2\sin (\frac{2\pi ux}{N})
\sin (\frac{2\pi u'x}{N})
=\cos (\frac{2\pi (u-u')x}{N})
-\cos (\frac{2\pi (u+u')x}{N}) \\
2\sin (\frac{2\pi ux}{N})
\cos (\frac{2\pi u'x}{N})
=\sin (\frac{2\pi (u+u')x}{N})
-\sin (\frac{2\pi (u-u')x}{N}) \\
\]
故想要证明其为标准正交基, 只需注意到:
=\frac{\cos(\frac{k\pi}{N}) - \cos (\frac{(2N-1)k\pi}{N})}{...},
\]
\(k\not=0\)的时候, 有
\]
故
\]
类似可得:
\]
正交性如此是易证明的, 实际上标准性是显然的.
DCT
DISCRETE COSINE TRANSFORM
\alpha (u) =
\left \{
\begin{array}{ll}
\sqrt{\frac{1}{N}}, & u=0, \\
\sqrt{\frac{2}{N}}, & u=1,2,\cdots, N-1. \\
\end{array}
\right .
\]
其标准正交的思路和DHT是如出一辙的.
与DFT的联系
- 定义
\left \{
\begin{array}{ll}
f(x), & x = 0, 1, \cdots, N-1, \\
f(2N-x-1), & u=N, N+1, \cdots, 2N-1. \\
\end{array}
\right .
\]
此时\(g(x) = g(2N-1-x)\);
- 计算DFT
\left [
\begin{array}{c}
\mathbf{t}_1 \\
\mathbf{t}_2 \\
\end{array}
\right ].
\]
- 定义
\mathbf{s} = [1 / \sqrt{2}, 1, 1, \cdots, 1]^T.
\]
\]
其中\(\mathrm{Re}\)表示实部, \(\circ\)表示逐项乘法.
证明是平凡的.
DST
DISCRETE SINE TRANSFORM
\]
与DFT的联系
- 定义
\left \{
\begin{array}{ll}
0, & x = 0, \\
f(x-1), & x = 1, \cdots, N, \\
0, & x = N + 1, \\
-f(2N-x+1), & u=N+1, \cdots, 2N+1. \\
\end{array}
\right .
\]
此时\(g(x) = -g(2N + 2 - x)\).
- DFT
\left [
\begin{array}{c}
0 \\
\mathbf{t}_1 \\
0 \\
\mathbf{t}_2 \\
\end{array}
\right ].
\]
\]
其中\(\mathrm{Imag}\)表虚部.
DFT, DHT, DCT, DST的更多相关文章
- 频域分辨率与DFT,DCT,MDCT理解
搞了这么久音频算法,有些细节还没有很清楚. 比如DFT和DCT有哪些区别,DFT系数为什么会是对称的,同样帧长的数据,各自的频域分辨率是多少? 今天决定搞清楚这些问题, 首先DFT的系数对称(2N点的 ...
- 【转】由DFT推导出DCT
原文地址:http://blog.sina.com.cn/s/blog_626631420100xvxd.htm 已知离散傅里叶变换(DFT)为: 由于许多要处理的信号都是实信号,在使用DFT时由于傅 ...
- FFTW中文参考
据说FFTW(Fastest Fourier Transform in the West)是世界上最快的FFT.为了详细了解FFTW以及为编程方便,特将用户手册看了一下,并结合手册制作了以下FFTW中 ...
- FFTW3学习笔记2:FFTW(快速傅里叶变换)中文参考
据说FFTW(Fastest Fourier Transform in the West)是世界上最快的FFT.为了详细了解FFTW以及为编程方便,特将用户手册看了一下,并结合手册制作了以下FFTW中 ...
- opencv 61篇
(一)--安装配置.第一个程序 标签: imagebuildincludeinputpathcmd 2011-10-21 16:16 41132人阅读 评论(50) 收藏 举报 分类: OpenCV ...
- FFTW简介及使用
http://fftw.org/ FFTW is a C subroutine library for computing the discrete Fourier transform (DFT) i ...
- C++开源库集合
| Main | Site Index | Download | mimetic A free/GPL C++ MIME Library mimetic is a free/GPL Email lib ...
- Discrete cosine transform(离散余弦转换)
A discrete cosine transform (DCT) expresses a finite sequence of data points in terms of a sum of co ...
- [转载] OpenCV2.4.3 CheatSheet学习(二)
二.矩阵操作(拷贝.洗牌.局部访问): src.copyTo(dst) 把src矩阵中的数据拷贝到dst. src.convertTo(dst, type,scale, shift) 缩放并转换到另外 ...
随机推荐
- 学习java的第九天
一.今日收获 1.java完全学习手册第二章程序流程控制中的顺序结构与选择结构 2.学习了java中选择的一些语句和关键词 二.今日问题 1.例题验证有错的情况 2.哔哩哔哩教学视频的一些术语不太理解 ...
- 日常Java 2021/9/29
StringBuffer方法 public StringBuffer append(String s) 将指定的字符串追加到此字符序列. public StringBuffer reverse() 将 ...
- Scala【需求二:求各省市的各个指标】
需求处理步骤 原始数据->json->过滤->列裁剪 需求二:求各省市的各个指标 原始数据 文本pmt.json,每一行都是一个json字符串.里面包含ip等信息 {"se ...
- Swift3.0 延时执行
//延时1s执行 DispatchQueue.main.asyncAfter(deadline: DispatchTime.now() + Double(Int64(1*NSEC_PER_SEC))/ ...
- 【Python】【Basic】【数据类型】基本数据类型
1.数字 int(整型) 在32位机器上,整数的位数为32位,取值范围为-2**31-2**31-1,即-2147483648-2147483647 在64位系统上,整数的位数为64位,取值范围为-2 ...
- t01_docker安装TiDB
Docker环境安装TiDB,在官方说明的基础上补充了几个细节,安装记录如下 个人环境-vbox上安装centos7.4系统 CPU:12核24线程,分配给虚拟机12线程 MEM: 48G,分配给虚拟 ...
- 【C/C++】编码(腾讯)
假定一种编码的编码范围是a ~ y的25个字母,从1位到4位的编码,如果我们把该编码按字典序排序,形成一个数组如下: a, aa, aaa, aaaa, aaab, aaac, - -, b, ba, ...
- Mysql资料 查询SQL执行顺序
目录 一.Mysql数据库查询Sql的执行顺序是什么? 二.具体顺序 一.Mysql数据库查询Sql的执行顺序是什么? (9)SELECT (10) DISTINCT column, (6)AGG_F ...
- C语言程序设计:模拟简单运算器的工作
目录 C语言程序设计:模拟简单运算器的工作 1.题目 2.分析 3.代码实现 4.结尾 C语言程序设计:模拟简单运算器的工作 1.题目 模拟简单运算器的工作,输入一个算式(没有空格),遇等号&qu ...
- 【Azure Redis 缓存】Azure Cache for Redis 中如何快速查看慢指令情况(Slowlogs)
问题描述 当 Azure Redis 服务器负载过高的情况下,使用时就会遇见连接超时,命令超时,IO Socket超时等异常.为了能定位是那些因素引起的,可以参考微软官方文档( 管理 Azure Ca ...