matlab与python scipy.signal中的freqs,freqz频率分析函数,输出的w,有时候是角频率,有时候是真实频率,容易搞混,这里对比一下。

0.  精要总结:

  1) freqs: 

    matlab, 角频率,rad.s

    python, 角频率 rad/s ,只能是角频率。

  2) freqz

    matlab,  形式为 [h,w] = freqz(b,a,n) 角频率

        形式为 [h,f] = freqz(___,n,fs) 时,频率输出形式f为Hz形式,fs为采样频率

    python scipy 中 w,h =freqz(b,a,worN,fs) , w的单位与输入fs相同,fs为归一化角频率时,w也为角频率,fs为采样频率,单位Hz时,w也为Hz。

  3) 角频率范围的区别:

    freqs中的角频率是现实中的量,可以很大,比如1000Hz,对应的角频率为1000*2*pi ;  freqz中的角频率是数字化的,一般使用时是归一化的,范围在 0,2*pi之间。

  4) 角频率与Hz频率转化:

    freqs的w结果要想用Hz,显示,可以先 w/2/pi 转化为 Hz 频率; freqz中的角频率如果要转化为具体的频率, 因为他是归一化的,用 0~ pi 的范围代表 0- fs/2 的频率范围,可以用 f=( w/pi)*(fs/2) 转化为Hz频率

1.  freqs

1.1 matlab中

freqs 是角频率w的单位 rad/s,想要变成Hz, 显示时使用 f = w/2/pi

模拟的freqs不存在归一化。

a = [1 0.4 1];
b = [0.2 0.3 1];
w = logspace(-1,1); h = freqs(b,a,w);
mag = abs(h);
phase = angle(h);
phasedeg = phase*180/pi; subplot(2,1,1)
loglog(w,mag)
grid on
xlabel('Frequency (rad/s)')
ylabel('Magnitude') subplot(2,1,2)
semilogx(w,phasedeg)
grid on
xlabel('Frequency (rad/s)')
ylabel('Phase (degrees)')

  

1.2 python scipy.signal 中

freqs 输出的w也是rad/s,也只能是rad/s 角频率。不过这个不是归一化的。模拟的freqs不存在归一化。

w : ndarray

  The angular frequencies at which `h` was computed.

b = [1]
a = [0.125 ,1] # b(0) *s^0
# s = ----------------
# a(0)*s^1 +a(1)*s^0 from scipy.signal import bilinear,freqs,freqz
import matplotlib.pyplot as plt
import numpy as np # %% python scipy.signal 中 freqs
wf=np.logspace(-1, 4, 1000)
w,h = freqs(b,a,wf) plt.semilogx(w,20*np.log10(np.abs(h)))
plt.xlabel('rad/s')

  

如何转化为Hz显示,就是x坐标轴 除以 2*pi

b = [1]
a = [0.125 ,1] # b(0) *s^0
# s = ----------------
# a(0)*s^1 +a(1)*s^0 from scipy.signal import bilinear,freqs,freqz
import matplotlib.pyplot as plt
import numpy as np # %% python scipy.signal 中 freqs
wf=np.logspace(-1, 4, 1000)
w,h = freqs(b,a,wf) # plt.semilogx(w,20*np.log10(np.abs(h)))
# plt.xlabel('rad/s') plt.semilogx(w/2/np.pi,20*np.log10(np.abs(h)))
plt.xlabel('Hz')

  

2.  freqz

2.1 matlab中

1) 函数形式为

[h,w] = freqz(b,a,n)

时,w输出为角频率,且归一化,即最大的角频率为 pi (对应fs/2,归一化处理) 。(n为输出的点的个数)和freqs中

2) 函数形式为

[h,f] = freqz(___,n,fs)

时,频率输出形式f为Hz形式,fs为采样频率。

b=1;
a=[0.125 1];
fs=2000;
[bz,az] = bilinear(b,a,fs);
[hz0,wz0] = freqz(bz,az,100); % 100是 n,输出点的个数
fz0= wz0/pi*fs/2; % 将 归一化的rad/s 转化为 实际的采样频率
plot(fz0,20*log10(abs(hz0)),'o');
xlabel('Hz')
hold on
[hz1,fz1] = freqz(bz,az,100,fs);
plot(fz1,20*log10(abs(hz1)),'r-','linewidth',3);
legend('wz0' , 'fz1')
hold off

  结果:

2.2 Python scipy.signal 中

freqz(b,a=1, worN=512, whole=False, plot=None, fs=2*pi, include_nyquist = False,)

Returns

-------

w : ndarray

The frequencies at which `h` was computed, in the same units as `fs`.

By default, `w` is normalized to the range [0, pi) (radians/sample).

w的单位和输入fs的单位相同,如果fs是用的 rad/s则返回w也是rad/s, 若输入fs的单位是 Hz,那么输出的w单位也是Hz。

代码部分

from scipy.signal import bilinear,freqs,freqz
import matplotlib.pyplot as plt
import numpy as np # b(0) *s^0
# s = ----------------
# a(0)*s^1 +a(1)*s^0 b = [1]
a = [0.125 ,1] # %% python scipy.signal 5000中 freqs
wf=np.logspace(-1,4,1000 )
w,h = freqs(b,a,wf) plt.semilogx(w/2/np.pi,20*np.log10(np.abs(h)),'o',label='freqs')
plt.xlabel('Hz')
plt.ylabel('dB') fs=5000
bz,az = bilinear(b,a,fs) worN=np.logspace(-1,4,2000)
idx_end = np.nonzero(worN<=fs/2)[0][-1]
z = freqz(bz,az,worN=worN[0:idx_end],fs=fs) plt.semilogx(z[0],20*np.log10(z[1]),'-',label='freqz')
plt.legend()

  

matlab与python scipy.signal中 freqs freqz 中w,什么时候是角频率,什么时候是真实的工程中使用的采样频率Hz,如何转化的更多相关文章

  1. VS2010/MFC编程入门之三(VS2010应用程序工程中文件的组成结构)

    VS2010/MFC编程入门之三(VS2010应用程序工程中文件的组成结构)-软件开发-鸡啄米 http://www.jizhuomi.com/software/143.html   鸡啄米在上一讲中 ...

  2. Matlab 调用 Python 脚本

    Matlab 调用 Python 脚本 最近尝试在 Matlab 环境中调用 Python 脚本,这里总结下碰到的几个问题. 1. Python 模块加载 在 Matlab 函数中,想要将 Pytho ...

  3. 使用python scipy.optimize linprog和lingo线性规划求解最大值,最小值(运筹学学习笔记)

    1.线性规划模型: 2.使用python scipy.optimize linprog求解模型最优解: 在这里我们用到scipy中的linprog进行求解,linprog的用法见https://doc ...

  4. 【算法导论】八皇后问题的算法实现(C、MATLAB、Python版)

    八皇后问题是一道经典的回溯问题.问题描述如下:皇后可以在横.竖.斜线上不限步数地吃掉其他棋子.如何将8个皇后放在棋盘上(有8*8个方格),使它们谁也不能被吃掉?         看到这个问题,最容易想 ...

  5. Python scipy 计算短时傅里叶变换(Short-time Fourier transforms)

    计算短时傅里叶变换(STFT) scipy.signal.stft(x,fs = 1.0,window ='hann',nperseg = 256,noverlap = None,nfft = Non ...

  6. matlab转python

    最近在做把matlab代码转成python代码,没有用过matlab,python也只是局限于爬虫,所以.... matlab与python最大的不同是,matlab的下标是从1开始的,python和 ...

  7. Python使用signal模块实现定时执行

    在liunx系统中要想每隔一分钟执行一个命令,最普遍的方法就是crontab了,如果不想使用crontab,经同事指点在程序中可以用定时器实现这种功能,于是就开始摸索了,发现需要一些信号的知识... ...

  8. 选择、循环与函数结构:MATLAB VS Python

    选择.循环与函数结构:MATLAB VS Python 整理基本的程序控制结构,主要是选择 和 循环. 1.MATLAB选择结构 (1)单分支if语句格式: if 条件 语句组 end (2)双分支i ...

  9. 切片操作:MATLAB VS Python

    切片操作:MATLAB VS Python 一.MATLAB 矩阵的拆分 1.冒号表达式: t = e1:e2:e3 e1表示初始值,e2为步长,e3为终止值(包括e3),产生一个从e1到e3,步长为 ...

随机推荐

  1. 全面分析 Vue 的 computed 和 watch 的区别

    一.computed介绍 computed 用来监控自己定义的变量,该变量在 data 内没有声明,直接在 computed 里面定义,页面上可直接使用. //基础使用 {{msg}} <inp ...

  2. django ORM教程(转载)

    Django中ORM介绍和字段及字段参数   Object Relational Mapping(ORM) ORM介绍 ORM概念 对象关系映射(Object Relational Mapping,简 ...

  3. django使用restframework序列化查询集合(querryset)

    第一: pip install djangorestframework 第二: 在setting.py文件中的app添加名为: 'rest_framework', 第三:再项目的APP下面新建名为(可 ...

  4. lua文件修改为二进制文件

    注意:lua编译跟luajit编译的二进制文件是不兼容,不能运行的 如果是使用luajit,请直接使用luajit直接编译二进制 第一种:luajit编译(以openresty为例,跟luac是相反的 ...

  5. 低差异序列 (low-discrepancy sequences)之Hammerysley在半球中采样点方法的介绍

    半球上的Hammersley 源作者:Holger Dammertz 一组关于如何在2D中使用Hammersley点集以在着色器程序中快速实用地生成半球方向的笔记.如果你发现任何错误或有意见,不要犹豫 ...

  6. ARC106E-Medals【hall定理,高维前缀和】

    正题 题目链接:https://atcoder.jp/contests/arc106/tasks/arc106_e 题目大意 \(n\)个员工,第\(i\)个在\([1,A_i]\)工作,\([A_i ...

  7. P7276-送给好友的礼物【dp】

    正题 题目链接:https://www.luogu.com.cn/problem/P7276?contestId=39577 题目大意 \(n\)个点的一棵树,\(k\)个关键点,两个人从根出发分别走 ...

  8. 关于布隆过滤器,手写你真的知其原理吗?让我来带你手写redis布隆过滤器。

    说到布隆过滤器不得不提到,redis, redis作为现在主流的nosql数据库,备受瞩目:它的丰富的value类型,以及它的偏向计算向数据移动属性减少IO的成本问题.备受开发人员的青睐.通常我们使用 ...

  9. Unity——观察者模式

    观察者模式 一.Demo展示 二.设计思路 我们假设一种情况,在app中修改了头像,在所有显示头像的UI中都需要更改相应的图片,一个个去获取然后调用刷新会非常麻烦: 因此我们需要一个自动响应机制--观 ...

  10. 第十二章 Net 5.0 快速开发框架 YC.Boilerplate --千万级数据处理解决方案

    在线文档:http://doc.yc-l.com/#/README 在线演示地址:http://yc.yc-l.com/#/login 源码github:https://github.com/linb ...