模版 动态 dp

终于来写这个东西了。。

LG 模版:给定 n 个点的数,点有点权, $ m $ 次修改点权,求修改完后这个树的最大独立集大小。

我们先来考虑朴素的最大独立集的 dp

\[dp[u][0] = \sum_v max\{dp[v][1],dp[v][0]\}\\dp[u][1] = val[u] + \sum_v dp[v][0]
\]

现在我们就拥有了一个 $ O(nm) $ 的做法,但是明显它不优秀。

既然支持修改,我们可以考虑树剖(或者LCT),现在树被我们剖成了重链和轻链。此时发现我们其实可以先对轻子树算出 dp 值并且累计到当前根,再去算重链的影响,这样有什么好处呢?好处在于重链我们可以单独算,这样的话 dp 转移就是连续的。同时,当你修改一个点,它所影响的也仅仅是它到根的很多重链,不会影响到这路径上虚儿子的贡献。

但是如果按照原来的 dp 转移,修改点权仍然很困难。为此定义了一种新的矩阵乘法,让两个矩阵相乘时的乘法改成加法,加法改成最大值,也就是:

\[(A\times B)_{i,j} = \text{MAX}_k\{A_{i,k} + B_{k,j}\}
\]

不难发现这样定义矩阵乘法后矩阵乘法仍然满足结合律。

然后我们考虑对于一个点 $ u $ ,假设它已经算完了轻儿子的贡献,计作 $ g[u][0/1] $ ,考虑从重儿子转移,那么这个点的转移矩阵就是

\[\begin{bmatrix} g[u][0]&g[u][0]\\g[u][1]&-\infin \end{bmatrix}\times \begin{bmatrix}dp[u][0]\\dp[u][1]\end{bmatrix}
\]

为什么呢?考虑 $ dp[u][0] $ 可以从什么转移过来,是由 $ dp[u][0] $ 和 $ dp[u][1] $ 中选择较大的和 $ g[u][0] $ 加起来得到的,而 $ dp[u][1] $ 由 $ dp[u][0] + g[u][1] $ 得到,故最后一个位置填 $ -\infin $。

写到这里感觉 LCT 会比树剖好写的多,所以后面默认使用 LCT 了。

然后我们考虑对每个链维护它的转移矩阵的乘积。而 $ g $ 的维护就是对一个链的顶端的父亲更新 $ g $ 即可,体现在 LCT 中就是一个点维护它 splay 里面的矩阵的积。注意这里的矩阵乘法的顺序,对一个链做的时候应该从上乘到下,所以 pushup 的时候应该先左后中最后右。

如果我们需要得到一个点的 dp 值,必须把它 Access 并且 旋转到根,类似 Qtree V 的做法,不然它内部的值是假的(是子树或者splay子树内的乘积).

修改权值,比较简单的方法是 LCT 直接 旋转到根 然后直接修改 val 和矩阵就可以了。

感觉比 Red Blue Tree 好写,不用拿 BST 维护虚儿子信息。。(然后估计码一天)

代码还是很好看的(虽然调起来很烦)

#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
using namespace std;
#define MAXN 100006
#define max( a , b ) ( (a) > (b) ? (a) : (b) )
#define inf 0x3f3f3f3f
int n , m;
int w[MAXN]; int head[MAXN] , to[MAXN << 1] , nex[MAXN << 1] , ecn;
void ade( int u , int v ) {
to[++ ecn] = v , nex[ecn] = head[u] , head[u] = ecn;
} struct mtrx {
#define N 2
int A[2][2];
inline void in( int a , int b ) { A[0][0] = A[0][1] = a , A[1][0] = b , A[1][1] = -inf; }
inline int re( ) { return max( A[0][0] , A[1][0] ); }
inline mtrx operator * ( const mtrx& a ) const {
mtrx ret;
for( int i = 0 ; i < 2 ; ++ i ) for( int j = 0 ; j < 2 ; ++ j )
ret.A[i][j] = max( A[i][0] + a.A[0][j] , A[i][1] + a.A[1][j] );
return ret;
}
};
int ch[MAXN][2] , fa[MAXN] , dp[MAXN][2];
mtrx G[MAXN];
inline bool notroot( int u ) {
return ch[fa[u]][0] == u || ch[fa[u]][1] == u;
}
inline void pu( int u ) {
G[u].in( u[dp][0] , u[dp][1] );
if( ch[u][0] ) G[u] = G[ch[u][0]] * G[u];
if( ch[u][1] ) G[u] = G[u] * G[ch[u][1]];
}
inline void rotate( int u ) {
int f = fa[u] , g = fa[f] , w = ch[f][1]==u , k = ch[u][w^1];
if(notroot( f )) ch[g][ch[g][1]==f] = u;ch[f][w] = k , ch[u][w^1] = f;
fa[f] = u , fa[k] = f , fa[u] = g;
pu( f ) , pu( u );
}
//void rotate( int x ) {
// int f = fa[x] , g = fa[f] , w = ch[fa[x]][1] == x;
// int wf = ch[g][1]==f , k = ch[x][w^1];
// if( notroot(f) ) ch[g][wf] = x; ch[f][w] = k , ch[x][w^1] = f;
// fa[f] = x , fa[k] = f , fa[x] = g;
// pu( f ) , pu( x );
//}
void splay( int x ) {
int f , g;
while( notroot( x ) ) {
f = fa[x] , g = fa[f];
if( notroot( f ) )
rotate( (ch[f][0]==x)^(ch[g][0]==f) ? x : f );
rotate( x );
}
}
void access( int x ) {
for( int p = 0 ; x ; ( p = x , x = fa[x] ) ) {
splay(x);
if( ch[x][1] ) // Heavy -> Light
x[dp][0] += G[ch[x][1]].re() , x[dp][1] += G[ch[x][1]].A[0][0];
if( p ) // Light -> Heavy
x[dp][0] -= G[p].re() , x[dp][1] -= G[p].A[0][0];
ch[x][1] = p;
pu(x);
}
}
void pre( int u , int f ) {
dp[u][1] = w[u];
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == f ) continue;
pre( v , u );
fa[v] = u;
u[dp][0] += max( v[dp][0] , v[dp][1] );
u[dp][1] += v[dp][0];
}
G[u].in( u[dp][0] , u[dp][1] );
} int main() {
// freopen("in.in","r",stdin);
cin >> n >> m;
for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&w[i]);
for( int i = 1 , u , v ; i < n ; ++ i )
scanf("%d%d",&u,&v) , ade( u , v ) , ade( v , u );
pre( 1 , 1 );
// for( int i = 1 ; i <= n ; ++ i ) printf("%d\n",G[i].re());
int u , v;
while( m-- ) {
scanf("%d%d",&u,&v);
access( u );
splay( u );
dp[u][1] += v - w[u] , w[u] = v;
pu( u );
printf("%d\n",G[u].re());
// for( int i = 1 ; i <= n ; ++ i ) printf("%d ",fa[i]);
// puts("");
}
}

一个例题 NOIP 2018 保卫王国

其实就是板子题,每次询问,强制选本质上就是权值 inf 强制不选择就是 -inf

中间挂了几次。。这题 longlong 得注意。。(矩阵返回值没开LongLong然后wa了两发。。)

#include "iostream"
#include "algorithm"
#include "cstring"
#include "cstdio"
using namespace std;
#define MAXN 400006
#define max( a , b ) ( (a) > (b) ? (a) : (b) )
#define inf (1ll<<60)
int n , m;
int w[MAXN]; int head[MAXN] , to[MAXN << 1] , nex[MAXN << 1] , ecn;
void ade( int u , int v ) {
to[++ ecn] = v , nex[ecn] = head[u] , head[u] = ecn;
} struct mtrx {
#define N 2
long long A[2][2];
inline void in( long long a , long long b ) { A[0][0] = A[0][1] = a , A[1][0] = b , A[1][1] = -inf; }
inline long long re( ) { return max( A[0][0] , A[1][0] ); }
inline mtrx operator * ( const mtrx& a ) const {
mtrx ret;
for( int i = 0 ; i < 2 ; ++ i ) for( int j = 0 ; j < 2 ; ++ j )
ret.A[i][j] = max( A[i][0] + a.A[0][j] , A[i][1] + a.A[1][j] );
return ret;
}
};
int ch[MAXN][2] , fa[MAXN]; long long dp[MAXN][2];
mtrx G[MAXN];
inline bool notroot( int u ) {
return ch[fa[u]][0] == u || ch[fa[u]][1] == u;
}
inline void pu( int u ) {
G[u].in( u[dp][0] , u[dp][1] );
if( ch[u][0] ) G[u] = G[ch[u][0]] * G[u];
if( ch[u][1] ) G[u] = G[u] * G[ch[u][1]];
}
inline void rotate( int u ) {
int f = fa[u] , g = fa[f] , w = ch[f][1]==u , k = ch[u][w^1];
if(notroot( f )) ch[g][ch[g][1]==f] = u;ch[f][w] = k , ch[u][w^1] = f;
fa[f] = u , fa[k] = f , fa[u] = g;
pu( f ) , pu( u );
}
void splay( int x ) {
int f , g;
while( notroot( x ) ) {
f = fa[x] , g = fa[f];
if( notroot( f ) )
rotate( (ch[f][0]==x)^(ch[g][0]==f) ? x : f );
rotate( x );
}
}
void access( int x ) {
for( int p = 0 ; x ; ( p = x , x = fa[x] ) ) {
splay(x);
if( ch[x][1] ) // Heavy -> Light
x[dp][0] += G[ch[x][1]].re() , x[dp][1] += G[ch[x][1]].A[0][0];
if( p ) // Light -> Heavy
x[dp][0] -= G[p].re() , x[dp][1] -= G[p].A[0][0];
ch[x][1] = p;
pu(x);
}
}
void pre( int u , int f ) {
dp[u][1] = w[u];
for( int i = head[u] ; i ; i = nex[i] ) {
int v = to[i];
if( v == f ) continue;
pre( v , u );
fa[v] = u;
u[dp][0] += max( v[dp][0] , v[dp][1] );
u[dp][1] += v[dp][0];
}
G[u].in( u[dp][0] , u[dp][1] );
}
long long S;
void mdfy( int u , long long x ) {
access( u ) , splay( u );
dp[u][1] += x;
pu( u );
}
int main() {
freopen("defense.in","r",stdin);
freopen("defense.out","w",stdout);
cin >> n >> m;
scanf("%*s");
for( int i = 1 ; i <= n ; ++ i ) scanf("%d",&w[i]) , S += w[i];
for( int i = 1 , u , v ; i < n ; ++ i )
scanf("%d%d",&u,&v) , ade( u , v ) , ade( v , u );
pre( 1 , 1 );
// for( int i = 1 ; i <= n ; ++ i ) printf("%d\n",G[i].re());
int u , v , x1 , x2;
while( m-- ) {
scanf("%d%d%d%d",&u,&x1,&v,&x2);
mdfy( u , x1 ? -inf : inf ) , mdfy( v , x2 ? -inf : inf );
S += ( ( x1 ^ 1 ) + ( x2 ^ 1 ) ) * inf;
printf("%lld\n",S - G[v].re() > 1e10 ? -1 : S - G[v].re());
S -= ( ( x1 ^ 1 ) + ( x2 ^ 1 ) ) * inf;
mdfy( u , x1 ? inf : -inf ) , mdfy( v , x2 ? inf : -inf );
}
}

模版 动态 dp的更多相关文章

  1. 动态DP之全局平衡二叉树

    目录 前置知识 全局平衡二叉树 大致介绍 建图过程 修改过程 询问过程 时间复杂度的证明 板题 前置知识 在学习如何使用全局平衡二叉树之前,你首先要知道如何使用树链剖分解决动态DP问题.这里仅做一个简 ...

  2. Luogu P4643 【模板】动态dp

    题目链接 Luogu P4643 题解 猫锟在WC2018讲的黑科技--动态DP,就是一个画风正常的DP问题再加上一个动态修改操作,就像这道题一样.(这道题也是PPT中的例题) 动态DP的一个套路是把 ...

  3. 动态dp学习笔记

    我们经常会遇到一些问题,是一些dp的模型,但是加上了什么待修改强制在线之类的,十分毒瘤,如果能有一个模式化的东西解决这类问题就会非常好. 给定一棵n个点的树,点带点权. 有m次操作,每次操作给定x,y ...

  4. 洛谷P4719 动态dp

    动态DP其实挺简单一个东西. 把DP值的定义改成去掉重儿子之后的DP值. 重链上的答案就用线段树/lct维护,维护子段/矩阵都可以.其实本质上差不多... 修改的时候在log个线段树上修改.轻儿子所在 ...

  5. 动态 DP 学习笔记

    不得不承认,去年提高组 D2T3 对动态 DP 起到了良好的普及效果. 动态 DP 主要用于解决一类问题.这类问题一般原本都是较为简单的树上 DP 问题,但是被套上了丧心病狂的修改点权的操作.举个例子 ...

  6. 动态dp初探

    动态dp初探 动态区间最大子段和问题 给出长度为\(n\)的序列和\(m\)次操作,每次修改一个元素的值或查询区间的最大字段和(SP1714 GSS3). 设\(f[i]\)为以下标\(i\)结尾的最 ...

  7. [总结] 动态DP学习笔记

    学习了一下动态DP 问题的来源: 给定一棵 \(n\) 个节点的树,点有点权,有 \(m\) 次修改单点点权的操作,回答每次操作之后的最大带权独立集大小. 首先一个显然的 \(O(nm)\) 的做法就 ...

  8. UOJ268 [清华集训2016] 数据交互 【动态DP】【堆】【树链剖分】【线段树】

    题目分析: 不难发现可以用动态DP做. 题目相当于是要我求一条路径,所有与路径有交的链的代价加入进去,要求代价最大. 我们把链的代价分成两个部分:一部分将代价加入$LCA$之中,用$g$数组保存:另一 ...

  9. [复习]动态dp

    [复习]动态dp 你还是可以认为我原来写的动态dp就是在扯蛋. [Luogu4719][模板]动态dp 首先作为一个\(dp\)题,我们显然可以每次修改之后都进行暴力\(dp\),设\(f[i][0/ ...

随机推荐

  1. ScatterLayout:分散布局在py中的引用

    """ ScatterLayout:分散布局 """ from kivy.app import App from kivy.uix.scat ...

  2. Java:Iterator接口与fail-fast小记

    Java:Iterator接口与fail-fast小记 对 Java 中的 Iterator接口 和 fail-fast,做一个微不足道的小小小小记 Iterator Iterator接口 Itera ...

  3. Idea Maven auto Import

  4. [敏捷软工团队博客]Beta设计和计划

    项目 内容 2020春季计算机学院软件工程(罗杰 任健) 博客园班级博客 作业要求 Beta设计和计划 我们在这个课程的目标是 在团队合作中锻炼自己 这个作业在哪个具体方面帮助我们实现目标 对Beta ...

  5. 热身训练1 Blood Cousins Return

    点此看题 简要题面: 一棵树上有n个节点,每个节点有对应的名字(名字可重复). 每次询问,求深度比$vi$多$ki$的$vi$的儿子中,有多少种名字 分析: Step1: 我们可以懂$DFS$轻松找到 ...

  6. MyBatis源码分析(三):MyBatis初始化(配置文件读取和解析)

    一. 介绍MyBatis初始化过程 项目是简单的Mybatis应用,编写SQL Mapper,还有编写的SqlSessionFactoryUtil里面用了Mybatis的IO包里面的Resources ...

  7. Register Abstraction(9)

    This post will explain how to use the UVM Register Abstraction Layer (RAL) to generate register tran ...

  8. 如何系统学习C 语言(中)之 指针篇

    谈到指针,我们可能会想到钟表上的指针,但这里的指针不是现实生活中看得见摸得着的钟表上的指针,c 语言中的指针只存在于逻辑思维中,物理上并不存在. 同时,指针也是C 语言中最精华的部分,通过灵活地运用指 ...

  9. linux下c语言实现简单----线程池

    这两天刚好看完linux&c这本书的进程线程部分,学长建议可以用c语言实现一个简单的线程池,也是对线程知识的一个回顾与应用.线程的优点有好多,它是"轻量级的进程",所需资源 ...

  10. namaspace之pid namespace

    认识Namespace namespace 是 Linux 内核用来隔离内核资源的方式.通过 namespace 可以让一些进程只能看到与自己相关的一部分资源,而另外一些进程也只能看到与它们自己相关的 ...