Suppose a bank has N windows open for service. There is a yellow line in front of the windows which devides the waiting area into two parts. The rules for the customers to wait in line are:

  • The space inside the yellow line in front of each window is enough to contain a line with M customers. Hence when all the N lines are full, all the customers after (and including) the (st one will have to wait in a line behind the yellow line.
  • Each customer will choose the shortest line to wait in when crossing the yellow line. If there are two or more lines with the same length, the customer will always choose the window with the smallest number.
  • Customer​i​​ will take T​i​​ minutes to have his/her transaction processed.
  • The first N customers are assumed to be served at 8:00am.

Now given the processing time of each customer, you are supposed to tell the exact time at which a customer has his/her business done.

For example, suppose that a bank has 2 windows and each window may have 2 customers waiting inside the yellow line. There are 5 customers waiting with transactions taking 1, 2, 6, 4 and 3 minutes, respectively. At 08:00 in the morning, customer​1​​ is served at window​1​​ while customer​2​​ is served at window​2​​. Customer​3​​ will wait in front of window​1​​ and customer​4​​ will wait in front of window​2​​. Customer​5​​ will wait behind the yellow line.

At 08:01, customer​1​​ is done and customer​5​​ enters the line in front of window​1​​ since that line seems shorter now. Customer​2​​ will leave at 08:02, customer​4​​ at 08:06, customer​3​​ at 08:07, and finally customer​5​​ at 08:10.

Input Specification:

Each input file contains one test case. Each case starts with a line containing 4 positive integers: N (≤, number of windows), M (≤, the maximum capacity of each line inside the yellow line), K (≤, number of customers), and Q (≤, number of customer queries).

The next line contains K positive integers, which are the processing time of the K customers.

The last line contains Q positive integers, which represent the customers who are asking about the time they can have their transactions done. The customers are numbered from 1 to K.

Output Specification:

For each of the Q customers, print in one line the time at which his/her transaction is finished, in the format HH:MM where HH is in [08, 17] and MM is in [00, 59]. Note that since the bank is closed everyday after 17:00, for those customers who cannot be served before 17:00, you must output Sorry instead.

Sample Input:

2 2 7 5
1 2 6 4 3 534 2
3 4 5 6 7
 

Sample Output:

08:07
08:06
08:10
17:00
Sorry

题意:

N个窗口每个窗口最多容纳M个人排队,余下的人在大厅等候,当一个customer办理完成之后,等候的人到有空位的窗口去办理业务,如果同时有两个空位,则到编号小的空位去。做这道题的时候让我想到了,操作系统中的作业调度,这种情况符合先来先服务(FIFO)的原则。自然想到用队列来解决问题。要是有更多的测试数据就好了。

Code:

#include<iostream>
#include<vector>
#include<queue>
#include<map>
#include<iomanip>
#include<climits> using namespace std; typedef struct Customer {
int num;
int startTime;
int doneTime;
}cus; int main() {
int N, M, K, Q;
cin >> N >> M >> K >> Q; vector<queue<cus>> v(N);
vector<int> time(N, 0);
map<int, cus> m; int i, t, j = 1, flag = 0;
for (i = 0; i < N*M; ++i) {
cin >> t;
v[i%N].push({i+1, time[i%N], time[i%N]+t});
m.insert({i+1, {i+1, time[i%N], time[i%N]+t}});
time[i%N] += t;
}
for (; i < K; ++i) {
cin >> t;
flag = 0; int endTime = INT_MAX, tag;
for (int k = 0; k < N; ++k) {
if (v[k].size() < M && v[k].front().doneTime < endTime) {
tag = k;
flag = 1;
}
} if (flag) {
v[tag].push({i+1, time[tag], time[tag]+t});
m.insert({i+1,{i+1, time[tag], time[tag]+t}});
time[tag] += t;
continue;
} for (; j < 541; ++j) {
for (int k = 0; k < N; ++k) {
if (v[k].front().doneTime == j) {
v[k].pop();
v[k].push({i+1, time[k], time[k]+t});
m.insert({i+1,{i+1, time[k], time[k]+t}});
time[k] += t;
flag = 1;
}
}
if (flag) { --j; break; }
}
} for (int i = 0; i < Q; ++i) {
cin >> t;
int mins, hours;
mins = m[t].doneTime % 60;
hours = m[t].doneTime / 60;
if (m[t].startTime >= 540) cout << "Sorry" << endl;
else cout << setfill('0') << setw(2) << 8+hours << ":" << setfill('0') << setw(2) << mins << endl;
} return 0;
}

  

  

搞了半天就过了一组数据,挺失落的。


看了一下别人的博客,发现只要开始时间在17:00之前,不管结束时间是多少,都应该将业务办理完,改了一下代码,又通过了一组数据。

1014 Waiting in Line的更多相关文章

  1. PAT甲级1014. Waiting in Line

    PAT甲级1014. Waiting in Line 题意: 假设银行有N个窗口可以开放服务.窗前有一条黄线,将等候区分为两部分.客户要排队的规则是: 每个窗口前面的黄线内的空间足以包含与M个客户的一 ...

  2. PAT 1014 Waiting in Line (模拟)

    1014. Waiting in Line (30) 时间限制 400 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue Suppo ...

  3. PAT 甲级 1014 Waiting in Line (30 分)(queue的使用,模拟题,有个大坑)

    1014 Waiting in Line (30 分)   Suppose a bank has N windows open for service. There is a yellow line ...

  4. 1014 Waiting in Line (30分)

    1014 Waiting in Line (30分)   Suppose a bank has N windows open for service. There is a yellow line i ...

  5. PTA (Advanced Level) 1014 Waiting in Line

    Waiting in Line Suppose a bank has N windows open for service. There is a yellow line in front of th ...

  6. PAT A 1014. Waiting in Line (30)【队列模拟】

    题目:https://www.patest.cn/contests/pat-a-practise/1014 思路: 直接模拟类的题. 线内的各个窗口各为一个队,线外的为一个,按时间模拟出队.入队. 注 ...

  7. 1014. Waiting in Line (30)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

  8. PAT 1014. Waiting in Line

    Suppose a bank has N windows open for service.  There is a yellow line in front of the windows which ...

  9. 1014 Waiting in Line (30)(30 point(s))

    problem Suppose a bank has N windows open for service. There is a yellow line in front of the window ...

  10. 1014 Waiting in Line (30)(30 分)

    Suppose a bank has N windows open for service. There is a yellow line in front of the windows which ...

随机推荐

  1. JavaWeb实现用户登录注册功能实例代码(基于Servlet+JSP+JavaBean模式)

    一.Servlet+JSP+JavaBean开发模式(MVC)介绍 Servlet+JSP+JavaBean模式(MVC)适合开发复杂的web应用,在这种模式下,servlet负责处理用户请求,jsp ...

  2. springMvc+AJAX+JSON的增删改查

    <%@ page language="java" import="java.util.*" pageEncoding="UTF-8"% ...

  3. ubuntu上pyecharts V1版本环境搭建

    1 背景 今天想用pyecharts画图,在新的环境下使用pip安装之后发现,导入pyecharts模块一直失败,报错如下. 图 1 导入pyecharts错误图 请注意:我这里使用的python版本 ...

  4. KMP(超详细复杂度分析)

    从 stackoverflow中找到了一个时间复杂度分析很棒的链接 https://www.inf.hs-flensburg.de/lang/algorithmen/pattern/kmpen.htm ...

  5. PCA——主成分分析

    PCA(Principal Components Analysis)主成分分析是一个简单的机器学习算法,利用正交变换把由线性相关变量表示的观测数据转换为由少量线性无关比变量表示的数据,实现降维的同时尽 ...

  6. 客官,.NETCore无代码侵入的模型验证了解下

    背景 .NETCore下的模型验证相信绝大部分的.NET开发者或多或少的都用过,微软官方提供的模型验证相关的类位于System.ComponentModel.DataAnnotations命令空间下, ...

  7. net5 中 后台任务利器之Hangfire 的使用

    什么是Hangfire Hangfire 是一个开源的.NET任务调度框架,目前1.6+版本已支持.NET Core.它最大特点在于内置提供集成化的控制台,方便后台查看及监控: 另外,Hangfire ...

  8. POJ_1797 Heavy Transportation 【最大生成树的最小边】

    一.题目 POJ1797 二.分析 题意就是让你找到从1到n的一条路,由于边的最大称重限制,你需要确定限制的最小值,也就是能运输的最大值. 可以结合最小生成树想,利用并查集,然后不断更新答案即可,需要 ...

  9. x64 下记事本WriteFile() API钩取

    <逆向工程核心原理>第30章 记事本WriteFile() API钩取 原文是在x86下,而在x64下函数调用方式为fastcall,前4个参数保存在寄存器中.在原代码基础上进行修改: 1 ...

  10. 认清 React 的useState逻辑

    useState运行过程解析 function App() { const [n, setN] = useState(0); //使用 myUseState() return ( <div> ...