题解 [SBCOI2020] 一直在你身旁
题目大意
给出一个长度为 \(n\) 的单调不减的序列,每次可以选出一个点,产生贡献 \(a_k\),我们可以得知我们需要找到的数是否大于 \(k\)。问找到要找到的数最小花费。
\(n\le 7100\)
思路
\(\Theta(n^3)\) 的 \(\text{dp}\) 显然,可以设 \(f_{l,r}\) 表示答案在 \([l,r]\) 区间时找到答案最小贡献。可以得到转移式:
\]
然后我们经过思考,发现以下事情:
\(f(l,r)\ge f(l,r-1),f(l,r)\ge f(l+1,r)\)
我们如果设 \(w_{l,r}\) 表示第一个满足 \(f_{l,k}\ge f_{k+1,r}\) 的 \(k\),那么可以发现对于相同的 \(r\),\(w_{l,r}\) 随着 \(l\) 的减小而减小。
于是,我们可以把问题拆成两个部分进行考虑。
- \(k< w_{l,r}\)
对于这一部分,我们观察到式子可以改写为:
\]
然后你发现这个式子可以使用单调队列进行优化。
- \(k\ge w_{l,r}\)
对于这一部分你发现式子可以改写为:
\]
然后你发现 \(f_{l,k}+a_k\) 随着 \(k\) 的增大而增大,所以最优贡献点一定是在 \(w_{l,r}\)。
综上,可以枚举 \(r\) 然后使用单调队列优化即可,时间复杂度 \(\Theta(n^2)\)。
\(\texttt{Code}\)
#include <bits/stdc++.h>
using namespace std;
#define Int register int
#define int long long
#define MAXN 7105
template <typename T> inline void read (T &t){t = 0;char c = getchar();int f = 1;while (c < '0' || c > '9'){if (c == '-') f = -f;c = getchar();}while (c >= '0' && c <= '9'){t = (t << 3) + (t << 1) + c - '0';c = getchar();} t *= f;}
template <typename T,typename ... Args> inline void read (T &t,Args&... args){read (t);read (args...);}
template <typename T> inline void write (T x){if (x < 0){x = -x;putchar ('-');}if (x > 9) write (x / 10);putchar (x % 10 + '0');}
int n,head,tail,a[MAXN],q[MAXN],f[MAXN][MAXN];
void ins (int k,int r){
while (head <= tail && f[r][q[tail] + 1] + a[q[tail]] >= f[r][k + 1] + a[k]) -- tail;
q[++ tail] = k;
}
signed main(){
int T;read (T);
while (T --> 0){
read (n);
for (Int i = 1;i <= n;++ i) read (a[i]);
for (Int r = 2;r <= n;++ r){
q[head = tail = 1] = r - 1,f[r][r - 1] = a[r - 1];int res = r;
for (Int l = r - 2;l >= 1;-- l){
while (f[res - 1][l] > f[r][res] && res > l) -- res;
while (head <= tail && q[head] >= res) ++ head;
f[r][l] = f[res][l] + a[res];
if (head <= tail) f[r][l] = min (f[r][l],f[r][q[head] + 1] + a[q[head]]);
ins (l,r);
}
}
write (f[n][1]),putchar ('\n');
}
return 0;
}
题解 [SBCOI2020] 一直在你身旁的更多相关文章
- 2016 华南师大ACM校赛 SCNUCPC 非官方题解
我要举报本次校赛出题人的消极出题!!! 官方题解请戳:http://3.scnuacm2015.sinaapp.com/?p=89(其实就是一堆代码没有题解) A. 树链剖分数据结构板题 题目大意:我 ...
- noip2016十连测题解
以下代码为了阅读方便,省去以下头文件: #include <iostream> #include <stdio.h> #include <math.h> #incl ...
- BZOJ-2561-最小生成树 题解(最小割)
2561: 最小生成树(题解) Time Limit: 10 Sec Memory Limit: 128 MBSubmit: 1628 Solved: 786 传送门:http://www.lyd ...
- Codeforces Round #353 (Div. 2) ABCDE 题解 python
Problems # Name A Infinite Sequence standard input/output 1 s, 256 MB x3509 B Restoring P ...
- 哈尔滨理工大学ACM全国邀请赛(网络同步赛)题解
题目链接 提交连接:http://acm-software.hrbust.edu.cn/problemset.php?page=5 1470-1482 只做出来四道比较水的题目,还需要加强中等题的训练 ...
- 2016ACM青岛区域赛题解
A.Relic Discovery_hdu5982 Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/65536 K (Jav ...
- poj1399 hoj1037 Direct Visibility 题解 (宽搜)
http://poj.org/problem?id=1399 http://acm.hit.edu.cn/hoj/problem/view?id=1037 题意: 在一个最多200*200的minec ...
- 网络流n题 题解
学会了网络流,就经常闲的没事儿刷网络流--于是乎来一发题解. 1. COGS2093 花园的守护之神 题意:给定一个带权无向图,问至少删除多少条边才能使得s-t最短路的长度变长. 用Dijkstra或 ...
- CF100965C题解..
求方程 \[ \begin{array}\\ \sum_{i=1}^n x_i & \equiv & a_1 \pmod{p} \\ \sum_{i=1}^n x_i^2 & ...
随机推荐
- redis连接池 go-redis
为什么使用连接池? 首先Redis也是一种数据库,它基于C/S模式,因此如果需要使用必须建立连接,稍微熟悉网络的人应该都清楚地知道为什么需要建立连接,C/S模式本身就是一种远程通信的交互模式,因此Re ...
- MySQL-SQL基础
mysql> use test; Database changed mysql> create table emp(ename varchar(10),hirdate date,sal d ...
- QT开发实战一:图片显示
测试平台 宿主机平台:Ubuntu 12.04.4 LTS 目标机:Easy-ARM IMX283 目标机内核:Linux 2.6.35.3 QT版本:Qt-4.7.3 Tslib版本:tslib-1 ...
- 一文带你了解.Net读写锁
本文主要讲解.Net基于ReaderWriterLockSlim讲解读写锁 基础概念 读写锁是一个具有特殊用途的线程锁,适用于频繁读取且读取需要一定时间的场景,共享资源的读取操作通常是可以同时执行的, ...
- 可选链运算符、空值合并运算符 --应用到vue项目
1.npm安装 npm install @babel/plugin-proposal-optional-chaining // 可选链运算符 ?. npm install @babel/plugin- ...
- 驱动IO模型-select
新人学习,欢迎指正 部分select.c代码 应用层 select(maxfd+1,&rfds,NULL,NULL,NULL); -------------------(系统调用)------ ...
- 洛谷P1060——开心的金明
https://www.luogu.org/problem/show?pid=1060 题目描述 金明今天很开心,家里购置的新房就要领钥匙了,新房里有一间他自己专用的很宽敞的房间.更让他高兴的是,妈妈 ...
- 自己实现Controller——标准型
标准Controller 上一篇通过一个简单的例子,编写了一个controller-manager,以及一个极简单的controller.从而对controller的开发有个最基本的认识,但是细心观察 ...
- 猪齿鱼 SaaS 版效能平台发布
日前,猪齿鱼Choerodon全场景效能平台Saas版发布,提供体系化方法论和协作.测试.DevOps及容器工具,帮助企业拉通需求.设计.开发.部署.测试和运营流程,一站式提高管理效率和质量.从团队 ...
- 判断手机浏览器还是微信浏览器(PHP)
//判断是否 微信浏览器 function isWeixin1() { if (strpos($_SERVER['HTTP_USER_AGENT'], 'MicroMessenger') !== fa ...