\(\mathcal{Description}\)

  Link.

  给定 \(n\) 和 \(m\) 次多项式 \(f(x)\),求

\[\sum_{i=0}^n\binom{n}{i}f(i)\bmod998244353
\]

  \(m\le10^5\),\(m\le n\le 10^9\)。

\(\mathcal{Solution}\)

  推式子叭~

\[\begin{aligned}
\sum_{i=0}^n\binom{n}{i}f(i)&=\sum_{i=0}^ma_i\sum_{j=0}^n\binom{n}{i}j^i\\
&=\sum_{i=0}^ma_ii![x^i]\left(\sum_{j=0}^{+\infty}\frac{x^j}{j!}\sum_{k=0}^n\binom{n}{k}k^j\right)\\
&=\sum_{i=0}^ma_ii![x^i]\left(\sum_{k=0}^n\binom{n}{k}e^{kx}\right)\\
&=\sum_{i=0}^ma_ii![x^i](e^x+1)^n
\end{aligned}
\]

多项式全家桶算出 \((e^x+1)^n\) 即可,复杂度 \(\mathcal O(m\log m)\)。

\(\mathcal{Code}\)

/*~Rainybunny~*/

#include <cmath>
#include <cstdio>
#include <algorithm> #define rep( i, l, r ) for ( int i = l, rpbound##i = r; i <= rpbound##i; ++i )
#define per( i, r, l ) for ( int i = r, rpbound##i = l; i >= rpbound##i; --i ) const int MOD = 998244353, MAXL = 1 << 18, MAXM = 1e5, INV2 = MOD + 1 >> 1;
int n, m, c[MAXM + 5], fac[MAXL + 5], ifac[MAXL + 5];
int F[MAXL + 5], G[MAXL + 5]; inline int sub( int a, const int b ) { return ( a -= b ) < 0 ? a + MOD : a; }
inline int mul( const long long a, const int b ) { return int( a * b % MOD ); }
inline int add( int a, const int b ) { return ( a += b ) < MOD ? a : a - MOD; }
inline int mpow( int a, int b ) {
int ret = 1;
for ( ; b; a = mul( a, a ), b >>= 1 ) ret = mul( ret, b & 1 ? a : 1 );
return ret;
} inline void init( const int len ) {
fac[0] = 1;
rep ( i, 1, len ) fac[i] = mul( i, fac[i - 1] );
ifac[len] = mpow( fac[len], MOD - 2 );
per ( i, len - 1, 0 ) ifac[i] = mul( i + 1, ifac[i + 1] );
} namespace PolyOper { const int MG = 3;
int inv[MAXL + 5], omega[19][MAXL + 5]; inline void init() {
inv[1] = 1;
rep ( i, 2, MAXL ) inv[i] = mul( MOD - MOD / i, inv[MOD % i] );
rep ( i, 0, 18 ) {
int* oi = omega[i];
oi[0] = 1;
int& o1 = oi[1] = mpow ( MG, MOD - 1 >> i >> 1 );
rep ( j, 2, ( 1 << i ) - 1 ) oi[j] = mul( oi[j - 1], o1 );
}
} inline void ntt( const int n, int* u, const int type ) {
static int rev[MAXL + 5];
int lgn = 1;
for ( ; 1 << lgn < n; ++lgn );
rep ( i, 1, n - 1 ) rev[i] = rev[i >> 1] >> 1 | ( i & 1 ) << lgn >> 1;
rep ( i, 1, n - 1 ) if ( i < rev[i] ) {
u[i] ^= u[rev[i]] ^= u[i] ^= u[rev[i]];
}
for ( int i = 0, stp = 1; stp < n; ++i, stp <<= 1 ) {
const int* oi = omega[i];
for ( int j = 0; j < n; j += stp << 1 ) {
rep ( k, j, j + stp - 1 ) {
int ev = u[k], ov = mul( oi[k - j], u[k + stp] );
u[k] = add( ev, ov ), u[k + stp] = sub( ev, ov );
}
}
}
if ( type == -1 ) {
for ( int invn = MOD - ( MOD - 1 ) / n, i = 0; i < n; ++i ) {
u[i] = mul( u[i], invn );
}
std::reverse( u + 1, u + n );
}
} inline void polyDir ( const int n, const int* u, int* w ) {
rep ( i, 1, n - 1 ) w[i - 1] = mul( i, u[i] );
w[n - 1] = 0;
} inline void polyInt( const int n, const int* u, int* w ) {
per ( i, n - 1, 0 ) w[i + 1] = mul( inv[i + 1], u[i] );
w[0] = 0;
} inline void polyInv( const int n, const int* u, int* w ) {
static int tmp[2][MAXL + 5];
if ( n == 1 ) return void( w[0] = mpow( u[0], MOD - 2 ) );
polyInv( n >> 1, u, w );
rep ( i, 0, n - 1 ) tmp[0][i] = u[i], tmp[1][i] = w[i];
ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
rep ( i, 0, ( n << 1 ) - 1 ) {
tmp[0][i] = mul( mul( tmp[0][i], tmp[1][i] ), tmp[1][i] );
}
ntt( n << 1, tmp[0], -1 );
rep ( i, 0, n - 1 ) w[i] = sub( mul( 2, w[i] ), tmp[0][i] );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
} inline void polyLn( const int n, const int* u, int* w ) {
static int tmp[2][MAXL + 5];
polyDir( n, u, tmp[0] ), polyInv( n, u, tmp[1] );
ntt( n << 1, tmp[0], 1 ), ntt( n << 1, tmp[1], 1 );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = mul( tmp[0][i], tmp[1][i] );
ntt( n << 1, tmp[0], -1 ), polyInt( n << 1, tmp[0], w );
rep ( i, 0, ( n << 1 ) - 1 ) tmp[0][i] = tmp[1][i] = 0;
} inline void polyExp ( const int n, const int* u, int* w ) {
static int tmp[MAXL + 5];
if ( n == 1 ) return void( w[0] = 1 );
polyExp( n >> 1, u, w ), polyLn( n, w, tmp );
tmp[0] = sub( add( u[0], 1 ), tmp[0] );
rep ( i, 1, n - 1 ) tmp[i] = sub( u[i], tmp[i] );
ntt( n << 1, tmp, 1 ), ntt( n << 1, w, 1 );
rep ( i, 0, ( n << 1 ) - 1 ) w[i] = mul( w[i], tmp[i] );
ntt( n << 1, w, -1 );
rep ( i, n, ( n << 1 ) - 1 ) w[i] = tmp[i] = 0;
} } // namespace PolyOper. int main () {
freopen( "number.in", "r", stdin );
freopen( "number.out", "w", stdout ); PolyOper::init();
scanf( "%d %d", &n, &m ), ++m;
rep ( i, 0, m - 1 ) scanf( "%d", &c[i] ); int len = 1;
for ( ; len < m; len <<= 1 );
init( len ), F[0] = 1;
rep ( i, 1, len - 1 ) F[i] = mul( ifac[i], INV2 ); PolyOper::polyLn( len, F, G );
rep ( i, 0, len - 1 ) G[i] = mul( G[i], n ), F[i] = 0;
PolyOper::polyExp( len, G, F ); int ans = 0;
rep ( i, 0, m - 1 ) ans = add( ans, mul( c[i], mul( fac[i], F[i] ) ) );
printf( "%d\n", mul( ans, mpow( 2, n ) ) );
return 0;
}

Solution -「多校联训」查拉图斯特拉如是说的更多相关文章

  1. Solution -「多校联训」数学考试

    \(\mathcal{Description}\)   Link.   给定 \(n\) 个函数,第 \(i\) 个有 \(f_i(x)=a_ix^3+b_ix^2+cx_i+d~(x\in[l_i, ...

  2. Solution -「多校联训」排水系统

    \(\mathcal{Description}\)   Link.   在 NOIP 2020 A 的基础上,每条边赋权值 \(a_i\),随机恰好一条边断掉,第 \(i\) 条段的概率正比于 \(a ...

  3. Solution -「多校联训」I Love Random

    \(\mathcal{Description}\)   给定排列 \(\{p_n\}\),可以在其上进行若干次操作,每次选取 \([l,r]\),把其中所有元素变为原区间最小值,求能够得到的所有不同序 ...

  4. Solution -「多校联训」签到题

    \(\mathcal{Description}\)   Link.   给定二分图 \(G=(X\cup Y,E)\),求对于边的一个染色 \(f:E\rightarrow\{1,2,\dots,c\ ...

  5. Solution -「多校联训」朝鲜时蔬

    \(\mathcal{Description}\)   Link.   破案了,朝鲜时蔬 = 超现实树!(指写得像那什么一样的题面.   对于整数集 \(X\),定义其 好子集 为满足 \(Y\sub ...

  6. Solution -「多校联训」消失的运算符

    \(\mathcal{Description}\)   Link.   给定长度为 \(n\) 的合法表达式序列 \(s\),其中数字仅有一位正数,运算符仅有 - 作为占位.求将其中恰好 \(k\) ...

  7. Solution -「多校联训」假人

    \(\mathcal{Description}\)   Link.   一种物品有 长度 和 权值 两种属性,现给定 \(n\) 组物品,第 \(i\) 组有 \(k_i\) 个,分别为 \((1,a ...

  8. Solution -「多校联训」古老的序列问题

    \(\mathcal{Description}\)   Link.   给定序列 \(\{a_n\}\),和 \(q\) 次形如 \([L,R]\) 的询问,每次回答 \[\sum_{[l,r]\su ...

  9. Solution -「多校联训」Sample

    \(\mathcal{Description}\)   Link   (稍作简化:)对于变量 \(p_{1..n}\),满足 \(p_i\in[0,1],~\sum p_i=1\) 时,求 \(\ma ...

随机推荐

  1. linux -安装mysql,配置密码,开启远程访问

    1.安装 下载yum源的安装包 yum install https://repo.mysql.com//mysql80-community-release-el7-1.noarch.rpm 安装 yu ...

  2. LC 只出现一次的数字

    Given a non-empty array of integers nums, every element appears twice except for one. Find that sing ...

  3. Clickhouse的MergeTree表引擎存储结构

    MergeTree存储的文件结构 一张数据表被分成几个data part,每个data part对应文件系统中的一个目录.通过以下SQL可以查询data parts的信息. select table, ...

  4. POJ2891Strange Way to Express Integers

    http://poj.org/problem?id=2891 实际上就是一个一元线性同余方程组.按照合并的方式来解即可. 有一个注意点,调用函数是会慢的. #include<iostream&g ...

  5. 构造注入链:POP

    1.POP链原理简介: 在反序列化中,我们能控制的数据就是对象中的属性值,所以在PHP反序列化中有一种 漏洞利用方法叫"面向属性编程",即POP( Property Oriente ...

  6. 自动化部署:在Windows平台安装Jenkins

    在软件开发中经常会提到持续集成Continuous Integration(CI)和持续交付Continuous Delivery(CD).其中Jenkins是一个开源软件项目,是基于Java开发的一 ...

  7. 为什么 Redis 的查询很快, Redis 如何保证查询的高效

    Redis 如何保证高效的查询效率 为什么 Redis 比较快 Redis 中的数据结构 1.简单动态字符串 SDS 对比 c 字符串的优势 SDS可以常数级别获取字符串的长度 杜绝缓冲区溢出 减少修 ...

  8. linux网卡知识

    使用 Vim 文本编辑器来配置网卡设备的绑定参数.网卡绑定的理论知识类似于前面学习的 RAID 硬盘组,我们需要对参与绑定的网卡设备逐个进行"初始设置".需要注意的是,这些原本独立 ...

  9. Python初学笔记列表&元组&字典

    一.从键盘获取 1 print("请输入") 2 username = input("姓名:") 3 age = input("年龄:") ...

  10. python 小兵(6)函数进阶

    阅读目录 函数参数-动态参数 名称空间 函数的嵌套 gloabal.nonlocal 回到顶部 函数参数-动态参数 之前我们说过传参,如果我们在传参数的时候不很清楚有哪些的时候,或者说给一个函数传了很 ...