算法编程Algos Programming
算法编程Algos Programming
不同算法的集合,用于编程比赛,如ACM ICPC。
算法按主题划分。大多数算法都可以从文件中按原样运行。每种算法都有一个参考问题,并对其时间和空间复杂度作了一些说明。
参考:https://github.com/ADJA/algos
算法列表List of algorithms
动态(优化,规划)编程Dynamic Programming
- Convex Hull trick – Convex Hull trick is a geometry based dynamic programming modification.
- Longest Increasing Sequence – Fast way to find longest increasing subsequence (subsequence in which each next element is greater than previous).
- 凸壳(面,包,集)技巧–凸壳技巧是基于几何的动态规划修改。
- 最长递增序列–快速找到最长递增子序列(其中每个下一个元素大于前一个元素的子序列)。
数据结构Data Structures
- Cartesian Tree – Cartesian tree is a randomized balanced binary search tree.
- Cartesian Tree with implicit keys – Cartesian tree with implicit keys is a powerful modification of cartesian tree, which can be used to solve many interesting problems. This implementation solves the problem of finding range minimum and also can perform reverse of an array segment.
- Fenwick tree – Fenwick tree is a simple and easy-to-write data structure which can be used to find the value of some reversible function on the interval and also change the value of some element. This implementation can find the sum on the interval and update any arbitrary element.
- Fenwick tree 2D – Extension of Fenwick tree on 2D case. This code can find the sum on the rectangle and update any arbitrary element.
- Implicit segment tree – Implicit segment tree is a modification of segment tree which creates nodes only when they are needed. It can be used on big intervals like [1..109]. This code performs addition on the interval and getting the value of some element.
- Queue with minimum – Modification of queue, which allows finding the minimum element in it.
- Segment Tree (Add-Min-Max) – Segment tree is a powerful data structure which can perform many operations on the intervals in O(logN) time. This implementation performs addition and min/max interval.
- Segment Tree (Assign-Sum) – Segment tree implementation that performs assignment and gets the sum on the interval.
- Segment Tree (minimum on a segment and update) – Segment tree. Solves RMQ problem (maximum on a segment and value update).
- Sparse table – Solves static RMQ problem (range minimum/maximum query without element changes).
几何学Geometry
- Closest pair of points (Code 2) – Divide-and-conquer approach to find the closest pair of points.
- Convex Hull (Code 2) – Graham-Andrew and Graham scan methods to find convex hull (the least convex polygon containing all given points).
图论Graphs
- Bellman-Ford algorithm – Bellman-Ford algorithm finding shortest distances from a single vertex in graph.
- Bipartite matching – Kuhn algorithm for maximum matching in bipartite graph.
- Bridges search – Algorithm for finding all bridges in the graph (edges, after removal of which graph divides into several components).
- Centroid decomposition – Centroid decomposition of a tree.
- Cutpoints search – Algorithm for finding all cutpoints in the graph (vertices, after removal of which graph divides into several components).
- Dijkstra algorithm (set version) – Finding minimum distances from the single source with Dijkstra algorithm. No negative edges are allowed. Best for sparse graphs. Two versions using set and heap.
- Dinic maxflow – Dinic algorithm with scaling for finding the maximum flow.
- Eulerian path/cycle – Algorithm for finding the Eulerian path/cycle, i.e. path/cycle that visits every edge of the graph exactly once.
- Floyd-Warshall algorithm – Floyd-Warshall algorithm finding shortest distance between all pairs of vertices in graph.
- Ford-Fulkerson maxflow – Ford-Fulkerson algorithm for finding the maximum flow.
- Heavy-light decomposition – Heavy-light decomposition with segment trees in paths. Used for finding maximum on the path between two vertices.
- Hungarian matching – Hungarian algorithm for solving the assignment problem.
- LCA. Binary ascent. – Finding LCA (Least common ancestor) of two vertices in the tree. Uses dp calculated on powers of 2.
- LCA. Heavy-light decomposition. – Finding LCA (Least common ancestor) of two vertices in the tree. Uses heavy-light decomposition.
- MinCost MaxFlow Dijkstra (Heap Dijkstra) – Solution to MinCost MaxFlow (or simply MinCost Flow) using Dijkstra algorithm with potentials as shortest path search method.
- MinCost MaxFlow Ford-Bellman – Solution to MinCost MaxFlow (or simply MinCost Flow) using Ford-Bellman algorithm as shortest path search method.
- Minimum spanning tree. Kruskal algorithm – Kruskal algorithm for finding the minimum spanning tree (tree connecting the given graph with minumim sum of edges).
- Minimum spanning tree. Prim algorithm – Prim algorithm for finding the minimum spanning tree (tree connecting the given graph with minumim sum of edges).
数论Number Theory
- BigInt – Structure implementing long arithmetic in C++. Analogous to BigInteger in Java.
- Catalan numbers – Finding Nth Catalan number modulo some mod (mod is not necessary prime). Uses Eratosthenes sieve for fast factorization.
- Diophantine equation – Solving Diophantine equations in form of a * x + b * y = c. Uses extended Euclid algorithm (which finds such x, y that a * x + b * y = gcd(a, b)).
- Fast Fourier transformation – Fast Fourier transformation used to multiply long numbers. Fast non-recursive version.
- Gauss – Gauss method of solving systems of linear algebraic equation.
- Matrix – Matrix multiplication and fast binary power.
- Number by permutation – Finding number of permutation in lexicographical order.
- Permutation by number – Finding permutation by its length and number in lexicographical order.
其它Other
- Expression result calculation – Calculation of the value of the algebraic expression (like 2 * (5 + 7) - 25 / 5). Uses recursive descend. See code for the list of supported operations.
- Merge sort – Merge sort for sorting the array of integers.
- Quick sort – Quick sort with random pivoting for sorting the array of integers.
- Radix sort – Radix sort for sorting the array of integers.
字符串Strings
- Aho-Corasick – Aho-Corasick algorithm. This code finds all words in the text that contain any of the initially given words.
- Hashing – Hashing in strings based problems. This code compares substrings using two hashes (one uses 2^64 as a modulo, another 10^9 + 7).
- Manacher's algorithm – Manacher's algorithm for finding all subpalindromes in the string.
- Palindrome tree – Useful structure to deal with palindromes in strings. This code counts number of palindrome substrings of the string.
- Prefix function – Calculating the prefix function of the given string.
- Suffix Array – Building suffix array in O(NlogN). Also LCP array is calculated. This code counts number of different substrings in the string.
- Trie – Builds trie (tree with characters on the edges) from the set of strings. This code counts number of different substrings in the string.
- Suffix Tree. Ukkonen's algorithm – Ukkonen's algorithm for building the suffix tree. Uses sibling lists in the nodes. This code counts number of different substrings in the string.
- Z function – Calculating the Z-function of the given string.
算法编程Algos Programming的更多相关文章
- .Net中的反应式编程(Reactive Programming)
系列主题:基于消息的软件架构模型演变 一.反应式编程(Reactive Programming) 1.什么是反应式编程:反应式编程(Reactive programming)简称Rx,他是一个使用LI ...
- C算法编程题系列
我的编程开始(C) C算法编程题(一)扑克牌发牌 C算法编程题(二)正螺旋 C算法编程题(三)画表格 C算法编程题(四)上三角 C算法编程题(五)“E”的变换 C算法编程题(六)串的处理 C算法编程题 ...
- C算法编程题(七)购物
前言 上一篇<C算法编程题(六)串的处理> 有些朋友看过我写的这个算法编程题系列,都说你写的不是什么算法,也不是什么C++,大家也给我提出用一些C++特性去实现问题更方便些,在这里谢谢大家 ...
- C算法编程题(六)串的处理
前言 上一篇<C算法编程题(五)“E”的变换> 连续写了几篇有关图形输出的编程题,今天说下有关字符串的处理. 程序描述 在实际的开发工作中,对字符串的处理是最常见的编程任务.本题目即是要求 ...
- C算法编程题(五)“E”的变换
前言 上一篇<C算法编程题(四)上三角> 插几句话,说说最近自己的状态,人家都说程序员经常失眠什么的,但是这几个月来,我从没有失眠过,当然是过了分手那段时期.每天的工作很忙,一个任务接一个 ...
- C算法编程题(四)上三角
前言 上一篇<C算法编程题(三)画表格> 上几篇说的都是根据要求输出一些字符.图案等,今天就再说一个“上三角”,有点类似于第二篇说的正螺旋,输出的字符少了,但是逻辑稍微复杂了点. 程序描述 ...
- C算法编程题(三)画表格
前言 上一篇<C算法编程题(二)正螺旋> 写东西前还是喜欢吐槽点东西,要不然写的真还没意思,一直的想法是在博客园把自己上学和工作时候整理的东西写出来和大家分享,就像前面写的<T-Sq ...
- C算法编程题(二)正螺旋
前言 上一篇<C算法编程题(一)扑克牌发牌> 写东西前总是喜欢吐槽一些东西,还是多啰嗦几句吧,早上看了一篇博文<谈谈外企涨工资那些事>,里面楼主讲到外企公司包含的五类人,其实不 ...
- C算法编程题(一)扑克牌发牌
前言 上周写<我的编程开始(C)>这篇文章的时候,说过有时间的话会写些算法编程的题目,可能是这两天周末过的太舒适了,忘记写了.下班了,还没回去,闲来无事就写下吧. 因为写C++的编程题和其 ...
随机推荐
- JAVA反序列化漏洞复现
目录 Weblogic反序列化漏洞 Weblogic < 10.3.6 'wls-wsat' XMLDecoder 反序列化漏洞(CVE-2017-10271) Weblogic WLS Cor ...
- 论文解读丨基于局部特征保留的图卷积神经网络架构(LPD-GCN)
摘要:本文提出一种基于局部特征保留的图卷积网络架构,与最新的对比算法相比,该方法在多个数据集上的图分类性能得到大幅度提升,泛化性能也得到了改善. 本文分享自华为云社区<论文解读:基于局部特征保留 ...
- SSRF_FastCGI
SSRF_FastCGI 目录 SSRF_FastCGI FastCGI协议 SSRF ssrf + fastcgi 参考 FastCGI协议 简介 Fast CGI源自旧版本的CGI 路由/结构图 ...
- word打印华文字体出现乱码
乱码原因:打印机自带字体库支持的问题 解决方法:解决方法是修改打印机的设置,不使用打印机的字体,直接使用电脑的字体. 具体操作:控制面板-设备和打印机-选中要设置的打印机-打印首选项-图像品质-设置字 ...
- 使用FileStream读写数据
这节讲一下使用FileStream读写数据,这是一个比较基础的流. FileStream类只能处理原始字节,所以它可以处理任何类型的文件. 先看一下它的构造方法: FileStream fs = ne ...
- Codeforces Round #660 (Div. 2)
A. Captain Flint and Crew Recruitment 题意:定义了一种数(接近质数),这种数可以写成p*q并且p和q都是素数,问n是否可以写成四个不同的数的和,并且保证至少三个数 ...
- 基于 el-form 封装一个依赖 json 动态渲染的表单控件
nf-form 表单控件的功能 基于 el-form 封装了一个表单控件,包括表单的子控件. 既然要封装,那么就要完善一些,把能想到的功能都要实现出来,不想留遗憾. 毕竟UI库提供的功能都很强大了,不 ...
- Beta——事后分析
事后总结 NameNotFound 团队 项目 内容 北航-2020-软件工程(春季学期) 班级博客 要求 Beta事后分析 课程目标 通过团队合作完成一个软件项目的开发 会议截图 一.设想和目标 软 ...
- 服务治理演进剖析 & Service Mesh、 xDS核心原理梳理
基于XDS协议实现控制面板与数据面板通信分享 基于这段时间在同程艺龙基础架构部的蹲坑,聊一聊微服务治理的核心难点.历史演进.最新动态, 以上内容属自我思考,不代表同程艺龙技术水准.如理解有偏差.理解不 ...
- Linux 面试总结
1. 统计指定目录的文件个数: find / -type f | wc –l 2.Linux 下常用目录 /boot:这个目录是用来存放与系统启动相关的文件/root:root用户的家目录/bin:存 ...