算法编程Algos Programming

不同算法的集合,用于编程比赛,如ACM ICPC。

算法按主题划分。大多数算法都可以从文件中按原样运行。每种算法都有一个参考问题,并对其时间和空间复杂度作了一些说明。

参考:https://github.com/ADJA/algos

算法列表List of algorithms

动态(优化,规划)编程Dynamic Programming

  • Convex Hull trick – Convex Hull trick is a geometry based dynamic programming modification.
  • Longest Increasing Sequence – Fast way to find longest increasing subsequence (subsequence in which each next element is greater than previous).
  • 凸壳(面,包,集)技巧–凸壳技巧是基于几何的动态规划修改。
  • 最长递增序列–快速找到最长递增子序列(其中每个下一个元素大于前一个元素的子序列)。

数据结构Data Structures

  • Cartesian Tree – Cartesian tree is a randomized balanced binary search tree.
  • Cartesian Tree with implicit keys – Cartesian tree with implicit keys is a powerful modification of cartesian tree, which can be used to solve many interesting problems. This implementation solves the problem of finding range minimum and also can perform reverse of an array segment.
  • Fenwick tree – Fenwick tree is a simple and easy-to-write data structure which can be used to find the value of some reversible function on the interval and also change the value of some element. This implementation can find the sum on the interval and update any arbitrary element.
  • Fenwick tree 2D – Extension of Fenwick tree on 2D case. This code can find the sum on the rectangle and update any arbitrary element.
  • Implicit segment tree – Implicit segment tree is a modification of segment tree which creates nodes only when they are needed. It can be used on big intervals like [1..109]. This code performs addition on the interval and getting the value of some element.
  • Queue with minimum – Modification of queue, which allows finding the minimum element in it.
  • Segment Tree (Add-Min-Max) – Segment tree is a powerful data structure which can perform many operations on the intervals in O(logN) time. This implementation performs addition and min/max interval.
  • Segment Tree (Assign-Sum) – Segment tree implementation that performs assignment and gets the sum on the interval.
  • Segment Tree (minimum on a segment and update) – Segment tree. Solves RMQ problem (maximum on a segment and value update).
  • Sparse table – Solves static RMQ problem (range minimum/maximum query without element changes).

几何学Geometry

  • Closest pair of points (Code 2) – Divide-and-conquer approach to find the closest pair of points.
  • Convex Hull (Code 2) – Graham-Andrew and Graham scan methods to find convex hull (the least convex polygon containing all given points).

图论Graphs

  • Bellman-Ford algorithm – Bellman-Ford algorithm finding shortest distances from a single vertex in graph.
  • Bipartite matching – Kuhn algorithm for maximum matching in bipartite graph.
  • Bridges search – Algorithm for finding all bridges in the graph (edges, after removal of which graph divides into several components).
  • Centroid decomposition – Centroid decomposition of a tree.
  • Cutpoints search – Algorithm for finding all cutpoints in the graph (vertices, after removal of which graph divides into several components).
  • Dijkstra algorithm (set version) – Finding minimum distances from the single source with Dijkstra algorithm. No negative edges are allowed. Best for sparse graphs. Two versions using set and heap.
  • Dinic maxflow – Dinic algorithm with scaling for finding the maximum flow.
  • Eulerian path/cycle – Algorithm for finding the Eulerian path/cycle, i.e. path/cycle that visits every edge of the graph exactly once.
  • Floyd-Warshall algorithm – Floyd-Warshall algorithm finding shortest distance between all pairs of vertices in graph.
  • Ford-Fulkerson maxflow – Ford-Fulkerson algorithm for finding the maximum flow.
  • Heavy-light decomposition – Heavy-light decomposition with segment trees in paths. Used for finding maximum on the path between two vertices.
  • Hungarian matching – Hungarian algorithm for solving the assignment problem.
  • LCA. Binary ascent. – Finding LCA (Least common ancestor) of two vertices in the tree. Uses dp calculated on powers of 2.
  • LCA. Heavy-light decomposition. – Finding LCA (Least common ancestor) of two vertices in the tree. Uses heavy-light decomposition.
  • MinCost MaxFlow Dijkstra (Heap Dijkstra) – Solution to MinCost MaxFlow (or simply MinCost Flow) using Dijkstra algorithm with potentials as shortest path search method.
  • MinCost MaxFlow Ford-Bellman – Solution to MinCost MaxFlow (or simply MinCost Flow) using Ford-Bellman algorithm as shortest path search method.
  • Minimum spanning tree. Kruskal algorithm – Kruskal algorithm for finding the minimum spanning tree (tree connecting the given graph with minumim sum of edges).
  • Minimum spanning tree. Prim algorithm – Prim algorithm for finding the minimum spanning tree (tree connecting the given graph with minumim sum of edges).

数论Number Theory

  • BigInt – Structure implementing long arithmetic in C++. Analogous to BigInteger in Java.
  • Catalan numbers – Finding Nth Catalan number modulo some mod (mod is not necessary prime). Uses Eratosthenes sieve for fast factorization.
  • Diophantine equation – Solving Diophantine equations in form of a * x + b * y = c. Uses extended Euclid algorithm (which finds such x, y that a * x + b * y = gcd(a, b)).
  • Fast Fourier transformation – Fast Fourier transformation used to multiply long numbers. Fast non-recursive version.
  • Gauss – Gauss method of solving systems of linear algebraic equation.
  • Matrix – Matrix multiplication and fast binary power.
  • Number by permutation – Finding number of permutation in lexicographical order.
  • Permutation by number – Finding permutation by its length and number in lexicographical order.

其它Other

  • Expression result calculation – Calculation of the value of the algebraic expression (like 2 * (5 + 7) - 25 / 5). Uses recursive descend. See code for the list of supported operations.
  • Merge sort – Merge sort for sorting the array of integers.
  • Quick sort – Quick sort with random pivoting for sorting the array of integers.
  • Radix sort – Radix sort for sorting the array of integers.

字符串Strings

  • Aho-Corasick – Aho-Corasick algorithm. This code finds all words in the text that contain any of the initially given words.
  • Hashing – Hashing in strings based problems. This code compares substrings using two hashes (one uses 2^64 as a modulo, another 10^9 + 7).
  • Manacher's algorithm – Manacher's algorithm for finding all subpalindromes in the string.
  • Palindrome tree – Useful structure to deal with palindromes in strings. This code counts number of palindrome substrings of the string.
  • Prefix function – Calculating the prefix function of the given string.
  • Suffix Array – Building suffix array in O(NlogN). Also LCP array is calculated. This code counts number of different substrings in the string.
  • Trie – Builds trie (tree with characters on the edges) from the set of strings. This code counts number of different substrings in the string.
  • Suffix Tree. Ukkonen's algorithm – Ukkonen's algorithm for building the suffix tree. Uses sibling lists in the nodes. This code counts number of different substrings in the string.
  • Z function – Calculating the Z-function of the given string.

算法编程Algos Programming的更多相关文章

  1. .Net中的反应式编程(Reactive Programming)

    系列主题:基于消息的软件架构模型演变 一.反应式编程(Reactive Programming) 1.什么是反应式编程:反应式编程(Reactive programming)简称Rx,他是一个使用LI ...

  2. C算法编程题系列

    我的编程开始(C) C算法编程题(一)扑克牌发牌 C算法编程题(二)正螺旋 C算法编程题(三)画表格 C算法编程题(四)上三角 C算法编程题(五)“E”的变换 C算法编程题(六)串的处理 C算法编程题 ...

  3. C算法编程题(七)购物

    前言 上一篇<C算法编程题(六)串的处理> 有些朋友看过我写的这个算法编程题系列,都说你写的不是什么算法,也不是什么C++,大家也给我提出用一些C++特性去实现问题更方便些,在这里谢谢大家 ...

  4. C算法编程题(六)串的处理

    前言 上一篇<C算法编程题(五)“E”的变换> 连续写了几篇有关图形输出的编程题,今天说下有关字符串的处理. 程序描述 在实际的开发工作中,对字符串的处理是最常见的编程任务.本题目即是要求 ...

  5. C算法编程题(五)“E”的变换

    前言 上一篇<C算法编程题(四)上三角> 插几句话,说说最近自己的状态,人家都说程序员经常失眠什么的,但是这几个月来,我从没有失眠过,当然是过了分手那段时期.每天的工作很忙,一个任务接一个 ...

  6. C算法编程题(四)上三角

    前言 上一篇<C算法编程题(三)画表格> 上几篇说的都是根据要求输出一些字符.图案等,今天就再说一个“上三角”,有点类似于第二篇说的正螺旋,输出的字符少了,但是逻辑稍微复杂了点. 程序描述 ...

  7. C算法编程题(三)画表格

    前言 上一篇<C算法编程题(二)正螺旋> 写东西前还是喜欢吐槽点东西,要不然写的真还没意思,一直的想法是在博客园把自己上学和工作时候整理的东西写出来和大家分享,就像前面写的<T-Sq ...

  8. C算法编程题(二)正螺旋

    前言 上一篇<C算法编程题(一)扑克牌发牌> 写东西前总是喜欢吐槽一些东西,还是多啰嗦几句吧,早上看了一篇博文<谈谈外企涨工资那些事>,里面楼主讲到外企公司包含的五类人,其实不 ...

  9. C算法编程题(一)扑克牌发牌

    前言 上周写<我的编程开始(C)>这篇文章的时候,说过有时间的话会写些算法编程的题目,可能是这两天周末过的太舒适了,忘记写了.下班了,还没回去,闲来无事就写下吧. 因为写C++的编程题和其 ...

随机推荐

  1. 如何利用C++的time头文件获取系统时间

    C++提供了time.h头文件进行时间编辑操作,可以把时间格式化进tm结构体,方便使用.MFC框架中的ctime类就是基于time.h封装的. 代码样例: #include <iostream& ...

  2. (1) arm 指令格式

    arm 指令的基本格式如下: <opcode>{<cond>}{S}{.W\.N} <Rd>,<Rn>{,<operand2>} opcod ...

  3. Android 面试必备 - 系统、App、Activity 启动过程“一锅端”

    Android 系统启动过程 从系统层看: linux 系统层 Android系统服务层 Zygote 从开机启动到Home Launcher: 启动bootloader (小程序:初始化硬件) 加载 ...

  4. Compare the contents of two arrays

    ✍️Define a methed to compare the contents of two arrays and return the result . 定义一个方法,用于比较两个数组的内容是否 ...

  5. Xshell6连Linux

    一.安装 文件 链接: 提取码:8rmr 二.连Linux 名称填自己喜欢的.续之前,我们保持一样的名字.主机填IP,根据之前Linux填的静态IP去连接. 然后双击,连接 我们用最高权限,填root ...

  6. 关于Aborted connection告警日志的分析

    前言: 有时候,连接MySQL的会话经常会异常退出,错误日志里会看到"Got an error reading communication packets"类型的告警.本篇文章我们 ...

  7. [技术博客]iview组件样式踩坑记录

    [技术博客]iview组件样式踩坑记录 iview官方文档. 在本次项目开发中,前端项目主要使用vue框架+iview组件构建,其中iview组件在使用过程中遇到了许多官方文档中没有明确说明或是很难注 ...

  8. checked 和 prop() (散列性比较少的)

    在<input  class="sex1" type="radio" checked>男 checked表示该框会被默认选上 prop()操作的是D ...

  9. Jmeter(四十五) - 从入门到精通高级篇 - Jmeter之网页爬虫-上篇(详解教程)

    1.简介 上大学的时候,第一次听同学说网页爬虫,当时比较幼稚和懵懂,觉得就是几只电子虫子爬在网页上在抓取东西.后来又听说写代码可以实现网页爬虫,宏哥感觉高大上,后来工作又听说,有的公司做爬虫被抓的新闻 ...

  10. [DB] Hadoop免密登录原理及设置

    情景: 现有两台电脑bigdata111.bigdata112,bigdata111想免密码登录bigdata112 过程: 1.bigdata111生成公钥(用于加密,给别人)和私钥(用于解密,自己 ...