题目链接:http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225

基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题
 收藏
 关注
F(n) = (n % 1) + (n % 2) + (n % 3) + ...... (n % n)。其中%表示Mod,也就是余数。

例如F(6) = 6 % 1 + 6 % 2 + 6 % 3 + 6 % 4 + 6 % 5 + 6 % 6 = 0 + 0 + 0 + 2 + 1 + 0 = 3。
给出n,计算F(n), 由于结果很大,输出Mod 1000000007的结果即可。
 
Input
输入1个数N(2 <= N <= 10^12)。
Output
输出F(n) Mod 1000000007的结果。
Input示例
6
Output示例
3

题解:

这题(LightOJ1245)的加强版,本来是求sigma(n/i)  1<=i<=n,而此题求的是:sigma(n%i)  1<=i<=n。

分两个区间枚举:

第一个区间 [1,sqrt(n)]:设i为除数,从1到sqrt(n)枚举i, 直接 ans += n%i;

第二个区间 [sqrt(n), n]:设i为商,从1到sqrt(n)枚举i,由于用后面区间的数去除n所得到的商,在很大一片区域是相同的,在这片区域,他们的余数成等差数列,且公差即为商,所以就可根据等差数列的求和公式,求出这段区域的余数和了。

需要特判在sqrt(n)处是否重复计算了。

代码如下:

 #include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXM = 1e5+;
const int MAXN = 1e6+; //inv(2,MOD-2) = 500000004
int main()
{
LL n;
while(scanf("%lld", &n)!=EOF)
{
LL m = (LL)sqrt(n);
LL ans = ;
for(LL i = ; i<=m; i++)
ans = (ans+n%i)%MOD;
for(LL i = ; i<=m; i++)
{
LL cnt = ((n/i)%MOD-(n/(i+))%MOD+MOD)%MOD; //求个数也要求模
LL a1 = n%i;
LL s = (a1*cnt%MOD + ((cnt*(cnt-)%MOD)*500000004LL%MOD)*i%MOD)%MOD;
ans = (ans+s)%MOD;
} if(n/m==m) ans = (ans-(n%m)+MOD)%MOD;
printf("%lld\n",ans);
}
}

51Nod 1225 余数之和 —— 分区枚举的更多相关文章

  1. 51nod 1225 余数之和 数论

    1225 余数之和 题目连接: http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1225 Description F(n) ...

  2. 51Nod 1225 余数之和 [整除分块]

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  3. 51nod 1225:余数之和

    传送门 题意 略 分析 \(\sum_i^n(n\%i)=\sum_i^n(n-i*n/i)=n^2-\sum_i^ni*n/i\) \(=\sum r\sum_i^ni[n/i==r]\) 可以证明 ...

  4. 51nod 1225 余数的和 数学

    1225 余数之和 基准时间限制:1 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 F(n) = (n % 1) + (n % 2) + (n % 3) + ... ...

  5. 51nod1225 余数之和

    打表可以看出规律.分块求就可以了. #include<cstdio> #include<cstring> #include<cctype> #include< ...

  6. bzoj 1257: [CQOI2007]余数之和sum 数学 && 枚举

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 1779  Solved: 823[Submit][Sta ...

  7. 【BZOJ1257】【CQOI2007】余数之和sum

    Description 给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数.例如j(5, ...

  8. [原博客] BZOJ 1257 [CQOI2007] 余数之和

    题目链接题意: 给定n,k,求 ∑(k mod i) {1<=i<=n} 其中 n,k<=10^9. 即 k mod 1 + k mod 2 + k mod 3 + … + k mo ...

  9. 1257: [CQOI2007]余数之和sum

    1257: [CQOI2007]余数之和sum Time Limit: 5 Sec  Memory Limit: 162 MBSubmit: 2001  Solved: 928[Submit][Sta ...

随机推荐

  1. java查看工具jinfo-windows

    Generates configuration information. This command is experimental and unsupported. Synopsis jinfo [  ...

  2. 【Python】分析文本split()

    分析单个文本 split()方法,是以空格为分隔符将字符串拆分成多个部分,并将这些部分存储到一个列表中 title = 'My name is oliver!' list = title.split( ...

  3. awakeFromNib方法和viewDidLoad方法区别

    当.nib文件被加载的时候,会发送一个awakeFromNib的消息到.nib文件中的每个对象,每个对象都可以定义自己的awakeFromNib函数来响应这个消息,执行一些必要的操作. 也就是说只有通 ...

  4. HPE IT 的DevOps 实践分享

    原文地址:http://www.codes51.com/article/detail_3124576.html 本篇文章来自于HPE和msup共同举办的技术开放日HPE测试技术总监肖俊的分享,由壹佰案 ...

  5. VueJS定义组件规则

    Vue.js 组件 组件(Component)是 Vue.js 最强大的功能之一,组件可以扩展 HTML 元素,封装可重用的代码. 组件系统让我们可以用独立可复用的小组件来构建大型应用,几乎任意类型的 ...

  6. hdu5386(暴力)

    题意: 给出两个n*n的矩阵,一个作为初始矩阵.一个作为目标矩阵,给出m个操作,操作有两种,一种是"L,x,y".代表我们要把x这一行赋成y,还有一种是"H,x,y&qu ...

  7. Linux 查看.so中导出函数

    方法一 nm -D  **.so 但这样能看到所有的导出,乱七八糟的很多,筛选用: nm **.so | grep XX 方法二objdump -tT **.so

  8. JavaWeb学习笔记:Servlet

    Servlet JavaWeb 概念 Java Web应用由一组Servlet.HTML页面.类.以及其他能够被绑定的资源构成. 他能够在各种供应商提供的实现Servlet规范的Servlet容器中执 ...

  9. C语言序列点问题总结(大多数高等教育C语言教学课程的漏洞)

    C语言序列点总结 2013年11月21于浙大华家池 C 语言副作用: (side effect)是指对数据对象或者文件的修改. 例如,语句 v = 99;的副作用是把 v 的值修改成 99. C语言序 ...

  10. C++第4次实验(提高班)—继承和派生1

    从项目2和项目3中选1题作为实验.剩下2题写成作业. [项目1 - 龙三] 请在以下程序的横线处填上适当内容,以使程序完整,并使程序的输出为: Name: 龙三 Grade: 19 #include ...