Given a non-empty tree with root R, and with weight W~i~ assigned to each tree node T~i~. The weight of a path from R to L is defined to be the sum of the weights of all the nodes along the path from R to any leaf node L.

Now given any weighted tree, you are supposed to find all the paths with their weights equal to a given number. For example, let's consider the tree showed in Figure 1: for each node, the upper number is the node ID which is a two-digit number, and the lower number is the weight of that node. Suppose that the given number is 24, then there exists 4 different paths which have the same given weight: {10 5 2 7}, {10 4 10}, {10 3 3 6 2} and {10 3 3 6 2}, which correspond to the red edges in Figure 1.

\ Figure 1

Input Specification:

Each input file contains one test case. Each case starts with a line containing 0 < N <= 100, the number of nodes in a tree, M (< N), the number of non-leaf nodes, and 0 < S < 2^30^, the given weight number. The next line contains N positive numbers where W~i~ (&lt1000) corresponds to the tree node T~i~. Then M lines follow, each in the format:

ID K ID[1] ID[2] ... ID[K]

where ID is a two-digit number representing a given non-leaf node, K is the number of its children, followed by a sequence of two-digit ID's of its children. For the sake of simplicity, let us fix the root ID to be 00.

Output Specification:

For each test case, print all the paths with weight S in non-increasing order. Each path occupies a line with printed weights from the root to the leaf in order. All the numbers must be separated by a space with no extra space at the end of the line.

Note: sequence {A~1~, A~2~, ..., A~n~} is said to be greater than sequence {B~1~, B~2~, ..., B~m~} if there exists 1 <= k < min{n, m} such that A~i~ = B~i~ for i=1, ... k, and A~k+1~ > B~k+1~.

Sample Input:

20 9 24
10 2 4 3 5 10 2 18 9 7 2 2 1 3 12 1 8 6 2 2
00 4 01 02 03 04
02 1 05
04 2 06 07
03 3 11 12 13
06 1 09
07 2 08 10
16 1 15
13 3 14 16 17
17 2 18 19

Sample Output:

10 5 2 7
10 4 10
10 3 3 6 2
10 3 3 6 2
排序是按权值,不是结点编号。
代码:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
#include <algorithm>
#include <map>
using namespace std;
int n,m,s,id,k,d;
int w[],f[],sw[],noleaf[],p;
vector<int> path[];
void getpath(int t) {///记录到叶节点的路径 和 总权值和
if(f[t] != -) {///父节点存在
getpath(f[t]);
sw[t] = w[t] + sw[f[t]];
}
else sw[t] = w[t];
path[p].push_back(w[t]);
}
int main() {
scanf("%d%d%d",&n,&m,&s);
for(int i = ;i < n;i ++) {
scanf("%d",&w[i]);
f[i] = -;
}
for(int i = ;i < m;i ++) {
scanf("%d%d",&id,&k);
noleaf[id] = ;
for(int j = ;j < k;j ++) {
scanf("%d",&d);
f[d] = id;
}
}
for(int i = ;i < n;i ++) {
if(noleaf[i])continue;
getpath(i);
if(sw[i] == s) {
p ++;
}
else {
path[p].clear();
}
}
sort(path,path + p);
for(int i = p - ;i >= ;i --) {
for(int j = ;j < path[i].size();j ++) {
if(j)putchar(' ');
printf("%d",path[i][j]);
}
putchar('\n');
}
}

1053 Path of Equal Weight (30)(30 分)的更多相关文章

  1. 【PAT】1053 Path of Equal Weight(30 分)

    1053 Path of Equal Weight(30 分) Given a non-empty tree with root R, and with weight W​i​​ assigned t ...

  2. 1053 Path of Equal Weight (30 分)

    Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weig ...

  3. 1053 Path of Equal Weight (30 分)(树的遍历)

    题目大意:给出树的结构和权值,找从根结点到叶子结点的路径上的权值相加之和等于给定目标数的路径,并且从大到小输出路径 #include<bits/stdc++.h> using namesp ...

  4. PAT 1053 Path of Equal Weight[比较]

    1053 Path of Equal Weight(30 分) Given a non-empty tree with root R, and with weight W​i​​ assigned t ...

  5. PAT 甲级 1053 Path of Equal Weight (30 分)(dfs,vector内元素排序,有一小坑点)

    1053 Path of Equal Weight (30 分)   Given a non-empty tree with root R, and with weight W​i​​ assigne ...

  6. pat 甲级 1053. Path of Equal Weight (30)

    1053. Path of Equal Weight (30) 时间限制 100 ms 内存限制 65536 kB 代码长度限制 16000 B 判题程序 Standard 作者 CHEN, Yue ...

  7. 1053 Path of Equal Weight——PAT甲级真题

    1053 Path of Equal Weight 给定一个非空的树,树根为 RR. 树中每个节点 TiTi 的权重为 WiWi. 从 RR 到 LL 的路径权重定义为从根节点 RR 到任何叶节点 L ...

  8. 1053 Path of Equal Weight

    Given a non-empty tree with root R, and with weight W​i​​ assigned to each tree node T​i​​. The weig ...

  9. 【PAT甲级】1053 Path of Equal Weight (30 分)(DFS)

    题意: 输入三个正整数N,M,S(N<=100,M<N,S<=2^30)分别代表数的结点个数,非叶子结点个数和需要查询的值,接下来输入N个正整数(<1000)代表每个结点的权重 ...

随机推荐

  1. CentOS 6.5语言包裁剪

    https://www.ibm.com/developerworks/cn/linux/l-cn-linuxglb/ 浅析 Linux 的国际化与本地化机制 Linux 是一个国际化的操作系统,它的工 ...

  2. Hibernate学习二----------hibernate简介

    © 版权声明:本文为博主原创文章,转载请注明出处 1.hibernate.cfg.xml常用配置 - hibernate.show_sql:是否把Hibernate运行时的SQL语句输出到控制台,编码 ...

  3. Content Security Policy

    资料来源:阮一峰博客 一.背景 XSS最常见,危害最大的网页安全漏洞,“网页安全政策”从根本上解决问题 二.简介 CSP的实质是白名单制度,明确告诉客户端那些外部资源可以加载和执行. CSP 大大增强 ...

  4. struct timeval 和 struct timespec

    struct timeval { time_t tv_sec; suseconds_t tv_usec; }; 測试代码例如以下: #include <stdio.h> #include ...

  5. 史上最浅显易懂的Git教程1

    工作区(Working Directory)就是你在电脑里能看到的目录, 工作区有一个隐藏目录.git,这个不算工作区,而是Git的版本库. Git的版本库里存了很多东西,其中最重要的就是称为stag ...

  6. OpenCV 中的三大数据类型( 概述 )

    前言 OpenCV 提供了许多封装好了的类型,而其中,以三大类型最为核心.本文将大致介绍这三大类型. CvArr:不确定数组 它可以被视为一个抽象基类,后面的两大类型都继承此类型并扩展.只要某个函数的 ...

  7. C - The C Answer (2nd Edition) - Exercise 1-1

    /* Run the "hello, world" program on your system. Experiment with leaving out parts of the ...

  8. uva--10714+找规律

    题意: 一根长度为len的木棍上有n仅仅蚂蚁.蚂蚁们都以1cm/s的速度爬行;假设一仅仅蚂蚁爬到了木棍的端点,那么他就会掉下去;假设两仅仅蚂蚁碰到一起了,他们就会掉头往相反方向爬行.输入len和n仅仅 ...

  9. HDU 5343 MZL's Circle Zhou 后缀自动机+DP

    MZL's Circle Zhou Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 131072/131072 K (Java/Othe ...

  10. CentOS6.5安装MySQL5.6 过程记录

    刚开始,还不太懂,直接上了MySQL5.7版本的二进制安装,结果遇到了各种问题,从5.6到5.7还是做了很大改变的,比如mysql_install_db的文件位置变更到了/bin文件下等等,觉得现在用 ...