Annoying problem

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 483    Accepted Submission(s): 148

Problem Description
Coco has a tree, whose nodes are conveniently labeled by 1,2,…,n, which has n-1 edge,each edge has a weight. An existing set S is initially empty.

Now there are two kinds of operation:



1 x: If the node x is not in the set S, add node x to the set S

2 x: If the node x is in the set S,delete node x from the set S



Now there is a annoying problem: In order to select a set of edges from tree after each operation which makes any two nodes in set S connected. What is the minimum of the sum of the selected edges’ weight ?


 
Input
one integer number T is described in the first line represents the group number of testcases.( T<=10 ) 

For each test:

The first line has 2 integer number n,q(0<n,q<=100000) describe the number of nodes and the number of operations.

The following n-1 lines each line has 3 integer number u,v,w describe that between node u and node v has an edge weight w.(1<=u,v<=n,1<=w<=100)

The following q lines each line has 2 integer number x,y describe one operation.(x=1 or 2,1<=y<=n)




 
Output
Each testcase outputs a line of "Case #x:" , x starts from 1.

The next q line represents the answer to each operation.


 
Sample Input
1
6 5
1 2 2
1 5 2
5 6 2
2 4 2
2 3 2
1 5
1 3
1 4
1 2
2 5
 
Sample Output
Case #1:
0
6
8
8
4
 
Author
FZUACM
 

题目大意:给出一棵树,每一个边都有一个权值,如今有一个空的集合,两种操作,1 x吧x节点放到集合中(假设还没放入),2 x把x节点从集合中拿出来(已放入)。如今要求将集合中的点之间的边权之和

dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ]

神一样的公式呀,表示比赛时根本就没想过要推公式,,。,,

先说这个公式怎么用,首先dfs一个顺序,加一个节点u。假设u节点的dfs序,在集合中节点的dfs序之间,那么找到最接近的(u的dfs序)的两个数为x和y;假设u节点的dfs序在集合中节点的dfs序的一側,那么x和y为集合中dfs序的最大值和最小值,,,,,这样带入公式中求的就是加入这个节点所带来的须要加入的距离。删除一个节点和加入时一样的。

如果节点要连接到一个链中,链的定点(x,y),那么u连接到x的距离是dfn[u] + dfn[x] - 2dfn[ lca(u,x) ] ;

u连接到y的距离dfn[u] + dfn[y] - 2dfn[ lca(u,x) ] :

x连接到y的距离dfn[x] + dfn[y] - 2dfn[ lca(x,y) ] :

u连接到x-y这个链的距离 = (u到y+u到x-x到y)/2

#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
using namespace std ;
#define maxn 100050
struct E{
int v , w ;
int next ;
}edge[maxn<<1];
int head[maxn] , cnt ;
int rmq[maxn][20] ;
int dep[maxn] , p[maxn] , belong[maxn] , cid ;
int vis[maxn] , dfn[maxn] ;
set<int> s ;
set<int>::iterator iter ;
void add(int u,int v,int w) {
edge[cnt].v = v ; edge[cnt].w = w ;
edge[cnt].next = head[u] ; head[u] = cnt++ ;
edge[cnt].v = u ; edge[cnt].w = w ;
edge[cnt].next = head[v] ; head[v] = cnt++ ;
}
void dfs(int fa,int u) {
int i , j , v ;
p[u] = ++cid ;
belong[cid] = u ;
for(i = head[u] ; i != -1 ; i = edge[i].next ) {
v = edge[i].v ;
if( v == fa ) continue ;
dfn[v] = dfn[u] + edge[i].w ;
rmq[v][0] = u ;
for(j = 1 ; j < 19 ; j++)
rmq[v][j] = rmq[ rmq[v][j-1] ][j-1] ;
dep[v] = dep[u] + 1 ;
dfs(u,v) ;
}
}
int lca(int u,int v) {
if( dep[u] < dep[v] ) swap(u,v) ;
int i ;
for(i = 19 ; i >= 0 ; i--) {
if( dep[ rmq[u][i] ] >= dep[v] )
u = rmq[u][i] ;
if( u == v ) return u ;
}
for(i = 19 ; i >= 0 ; i--) {
if( rmq[u][i] != rmq[v][i] ) {
u = rmq[u][i] ;
v = rmq[v][i] ;
}
}
return rmq[u][0] ;
}
int solve(int u) {
if( s.empty() ) return 0 ;
int x , y ;
iter = s.upper_bound(u) ;
if( iter == s.end() || iter == s.begin() ) {
x = belong[ *s.begin() ] ;
y = belong[ *s.rbegin() ] ;
}
else {
x = belong[*iter] ;
iter-- ;
y = belong[*iter] ;
}
u = belong[u] ;
return dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ] ;
}
int main() {
int Step = 0 , t ;
int n , m ;
int i , j , u , v , w , k ;
int ans ;
scanf("%d", &t) ;
while( t-- ) {
memset(head,-1,sizeof(head)) ;
memset(rmq,0,sizeof(rmq)) ;
memset(dfn,0,sizeof(dfn)) ;
memset(vis,0,sizeof(vis)) ;
cnt = cid = ans = 0 ;
s.clear() ;
scanf("%d %d", &n, &m) ;
for(i = 1 ; i < n ; i++) {
scanf("%d %d %d", &u, &v, &w) ;
add(u,v,w) ;
}
dep[1] = 1 ;
dfs(-1,1) ;
printf("Case #%d:\n", ++Step) ;
while( m-- ) {
scanf("%d %d", &k, &u) ;
u = p[u] ;
if( k == 1 ) {
if( !vis[u] ) {
vis[u] = 1 ;
ans += solve(u) ;
s.insert(u) ;
}
}
else {
if( vis[u] ) {
vis[u] = 0 ;
s.erase(u) ;
ans -= solve(u) ;
}
}
printf("%d\n", ans) ;
}
}
return 0 ;
}

hdu5296(2015多校1)--Annoying problem(lca+一个公式)的更多相关文章

  1. HDOJ 5296 Annoying problem LCA+数据结构

    dfs一遍得到每一个节点的dfs序,对于要插入的节点x分两种情况考虑: 1,假设x能够在集合中的某些点之间,找到左边和右边距离x近期的两个点,即DFS序小于x的DFS序最大点,和大于x的DFS序最小的 ...

  2. HDU 5296 Annoying problem LCA+树状数组

    题解链接 Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  3. HDU5296 Annoying problem(LCA)

    //#pragma comment(linker, "/STACK:1677721600") #include <map> #include <set> # ...

  4. HDU 5296 Annoying problem (LCA,变形)

    题意: 给一棵n个节点的树,再给q个操作,初始集合S为空,每个操作要在一个集合S中删除或增加某些点,输出每次操作后:要使得集合中任意两点互可达所耗最小需要多少权值.(记住只能利用原来给的树边.给的树边 ...

  5. 2015 Multi-University Training Contest 1 hdu 5296 Annoying problem

    Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. 2015 Multi-University Training Contest 1 - 1009 Annoying problem

    Annoying problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5296 Mean: 给你一个有根树和一个节点集合 ...

  7. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  8. HDU 5296 Annoying problem dfs序 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5296 Description Coco has a tree, w ...

  9. HDU 5296 Annoying problem dfs序 lca set

    Annoying problem Problem Description Coco has a tree, whose nodes are conveniently labeled by 1,2,…, ...

随机推荐

  1. 【bzoj2819】Nim DFS序+树状数组+倍增LCA

    题目描述 著名游戏设计师vfleaking,最近迷上了Nim.普通的Nim游戏为:两个人进行游戏,N堆石子,每回合可以取其中某一堆的任意多个,可以取完,但不可以不取.谁不能取谁输.这个游戏是有必胜策略 ...

  2. HDU——2723Electronic Document Security(STL map嵌套set做法)

    Electronic Document Security Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K ( ...

  3. 微信小程序页面跳转传参

    1.传递参数方法   使用navigatior组件 <navigator url="/pages/pull/pull?title=lalla&name=cc" hov ...

  4. 定时任务管理之python篇celery使用

    一.为什么要用celery celery是一个简单.灵活.可靠的,处理大量消息的分布式系统,并且提供维护这样一个系统的必须工具.他是一个专注于实时处理的任务队列,同时也支持任务调度. celery是异 ...

  5. TroubleShoot:The context has expired (0×80090317)

    网上搜了一下,服务器上的时间不正确,在SharePoint 设置中,可以通过管理中心设置下Time Zone 和服务器的时间上一致.

  6. net1:post,get方式传值,读写cookie,读XML文件,写script语句,跳转页面,response与request类

    原文发布时间为:2008-07-29 -- 来源于本人的百度文章 [由搬家工具导入] using System;using System.Data;using System.Configuration ...

  7. Solr5.2.1+Zookeeper3.4.9分布式集群搭建

    1.选取三台服务器 由于机器比较少,现将zookeeper和solr都部署在以下三台机器上.(以下操作都是在172.16.20.101主节点上进行的哦) 172.16.20.101 主节点 172.1 ...

  8. 眉目传情之匠心独运的kfifo【转】

    转自:http://blog.csdn.net/chen19870707/article/details/39899743 权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[-] 一 ...

  9. linux 下共享内存

    一.共享内存相关知识 所谓共享内存,就是多个进程间共同地使用同一段物理内存空间,它是通过将同一段物理内存映射到不同进程的 虚拟空间来实现的.由于映射到不同进程的虚拟空间中,不同进程可以直接使用,不需要 ...

  10. spring MVC学习之二

    什么是Spring MVC Spring MVC属于SpringFrameWork的后续产品,已经融合在Spring Web Flow里面.Spring 框架提供了构建 Web 应用程序的全功能 MV ...