Annoying problem

Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others)

Total Submission(s): 483    Accepted Submission(s): 148

Problem Description
Coco has a tree, whose nodes are conveniently labeled by 1,2,…,n, which has n-1 edge,each edge has a weight. An existing set S is initially empty.

Now there are two kinds of operation:



1 x: If the node x is not in the set S, add node x to the set S

2 x: If the node x is in the set S,delete node x from the set S



Now there is a annoying problem: In order to select a set of edges from tree after each operation which makes any two nodes in set S connected. What is the minimum of the sum of the selected edges’ weight ?


 
Input
one integer number T is described in the first line represents the group number of testcases.( T<=10 ) 

For each test:

The first line has 2 integer number n,q(0<n,q<=100000) describe the number of nodes and the number of operations.

The following n-1 lines each line has 3 integer number u,v,w describe that between node u and node v has an edge weight w.(1<=u,v<=n,1<=w<=100)

The following q lines each line has 2 integer number x,y describe one operation.(x=1 or 2,1<=y<=n)




 
Output
Each testcase outputs a line of "Case #x:" , x starts from 1.

The next q line represents the answer to each operation.


 
Sample Input
1
6 5
1 2 2
1 5 2
5 6 2
2 4 2
2 3 2
1 5
1 3
1 4
1 2
2 5
 
Sample Output
Case #1:
0
6
8
8
4
 
Author
FZUACM
 

题目大意:给出一棵树,每一个边都有一个权值,如今有一个空的集合,两种操作,1 x吧x节点放到集合中(假设还没放入),2 x把x节点从集合中拿出来(已放入)。如今要求将集合中的点之间的边权之和

dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ]

神一样的公式呀,表示比赛时根本就没想过要推公式,,。,,

先说这个公式怎么用,首先dfs一个顺序,加一个节点u。假设u节点的dfs序,在集合中节点的dfs序之间,那么找到最接近的(u的dfs序)的两个数为x和y;假设u节点的dfs序在集合中节点的dfs序的一側,那么x和y为集合中dfs序的最大值和最小值,,,,,这样带入公式中求的就是加入这个节点所带来的须要加入的距离。删除一个节点和加入时一样的。

如果节点要连接到一个链中,链的定点(x,y),那么u连接到x的距离是dfn[u] + dfn[x] - 2dfn[ lca(u,x) ] ;

u连接到y的距离dfn[u] + dfn[y] - 2dfn[ lca(u,x) ] :

x连接到y的距离dfn[x] + dfn[y] - 2dfn[ lca(x,y) ] :

u连接到x-y这个链的距离 = (u到y+u到x-x到y)/2

#include <cstdio>
#include <cstring>
#include <set>
#include <algorithm>
using namespace std ;
#define maxn 100050
struct E{
int v , w ;
int next ;
}edge[maxn<<1];
int head[maxn] , cnt ;
int rmq[maxn][20] ;
int dep[maxn] , p[maxn] , belong[maxn] , cid ;
int vis[maxn] , dfn[maxn] ;
set<int> s ;
set<int>::iterator iter ;
void add(int u,int v,int w) {
edge[cnt].v = v ; edge[cnt].w = w ;
edge[cnt].next = head[u] ; head[u] = cnt++ ;
edge[cnt].v = u ; edge[cnt].w = w ;
edge[cnt].next = head[v] ; head[v] = cnt++ ;
}
void dfs(int fa,int u) {
int i , j , v ;
p[u] = ++cid ;
belong[cid] = u ;
for(i = head[u] ; i != -1 ; i = edge[i].next ) {
v = edge[i].v ;
if( v == fa ) continue ;
dfn[v] = dfn[u] + edge[i].w ;
rmq[v][0] = u ;
for(j = 1 ; j < 19 ; j++)
rmq[v][j] = rmq[ rmq[v][j-1] ][j-1] ;
dep[v] = dep[u] + 1 ;
dfs(u,v) ;
}
}
int lca(int u,int v) {
if( dep[u] < dep[v] ) swap(u,v) ;
int i ;
for(i = 19 ; i >= 0 ; i--) {
if( dep[ rmq[u][i] ] >= dep[v] )
u = rmq[u][i] ;
if( u == v ) return u ;
}
for(i = 19 ; i >= 0 ; i--) {
if( rmq[u][i] != rmq[v][i] ) {
u = rmq[u][i] ;
v = rmq[v][i] ;
}
}
return rmq[u][0] ;
}
int solve(int u) {
if( s.empty() ) return 0 ;
int x , y ;
iter = s.upper_bound(u) ;
if( iter == s.end() || iter == s.begin() ) {
x = belong[ *s.begin() ] ;
y = belong[ *s.rbegin() ] ;
}
else {
x = belong[*iter] ;
iter-- ;
y = belong[*iter] ;
}
u = belong[u] ;
return dfn[u] - dfn[ lca(x,u) ] - dfn[ lca(y,u) ] + dfn[ lca(x,y) ] ;
}
int main() {
int Step = 0 , t ;
int n , m ;
int i , j , u , v , w , k ;
int ans ;
scanf("%d", &t) ;
while( t-- ) {
memset(head,-1,sizeof(head)) ;
memset(rmq,0,sizeof(rmq)) ;
memset(dfn,0,sizeof(dfn)) ;
memset(vis,0,sizeof(vis)) ;
cnt = cid = ans = 0 ;
s.clear() ;
scanf("%d %d", &n, &m) ;
for(i = 1 ; i < n ; i++) {
scanf("%d %d %d", &u, &v, &w) ;
add(u,v,w) ;
}
dep[1] = 1 ;
dfs(-1,1) ;
printf("Case #%d:\n", ++Step) ;
while( m-- ) {
scanf("%d %d", &k, &u) ;
u = p[u] ;
if( k == 1 ) {
if( !vis[u] ) {
vis[u] = 1 ;
ans += solve(u) ;
s.insert(u) ;
}
}
else {
if( vis[u] ) {
vis[u] = 0 ;
s.erase(u) ;
ans -= solve(u) ;
}
}
printf("%d\n", ans) ;
}
}
return 0 ;
}

hdu5296(2015多校1)--Annoying problem(lca+一个公式)的更多相关文章

  1. HDOJ 5296 Annoying problem LCA+数据结构

    dfs一遍得到每一个节点的dfs序,对于要插入的节点x分两种情况考虑: 1,假设x能够在集合中的某些点之间,找到左边和右边距离x近期的两个点,即DFS序小于x的DFS序最大点,和大于x的DFS序最小的 ...

  2. HDU 5296 Annoying problem LCA+树状数组

    题解链接 Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/O ...

  3. HDU5296 Annoying problem(LCA)

    //#pragma comment(linker, "/STACK:1677721600") #include <map> #include <set> # ...

  4. HDU 5296 Annoying problem (LCA,变形)

    题意: 给一棵n个节点的树,再给q个操作,初始集合S为空,每个操作要在一个集合S中删除或增加某些点,输出每次操作后:要使得集合中任意两点互可达所耗最小需要多少权值.(记住只能利用原来给的树边.给的树边 ...

  5. 2015 Multi-University Training Contest 1 hdu 5296 Annoying problem

    Annoying problem Time Limit: 16000/8000 MS (Java/Others)    Memory Limit: 65536/65536 K (Java/Others ...

  6. 2015 Multi-University Training Contest 1 - 1009 Annoying problem

    Annoying problem Problem's Link: http://acm.hdu.edu.cn/showproblem.php?pid=5296 Mean: 给你一个有根树和一个节点集合 ...

  7. HDU 5293 Annoying problem 树形dp dfs序 树状数组 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5293 Description Coco has a tree, w ...

  8. HDU 5296 Annoying problem dfs序 lca

    Annoying problem 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5296 Description Coco has a tree, w ...

  9. HDU 5296 Annoying problem dfs序 lca set

    Annoying problem Problem Description Coco has a tree, whose nodes are conveniently labeled by 1,2,…, ...

随机推荐

  1. layer弹窗在键盘按回车将反复刷新

      条件:弹窗后不做任何点击操作或者聚焦操作对于layer.load,弹出后反复按回车,load层将不断刷新,即使设置了自动消失也只有等不按回车键才会生效.对于layer iframe层有表单就更糟糕 ...

  2. Welcome-to-Swift-20扩展(Extensions)

    扩展就是向一个已有的类.结构体或枚举类型添加新功能(functionality).这包括在没有权限获取原始源代码的情况下扩展类型的能力(即逆向建模).扩展和 Objective-C 中的分类(cate ...

  3. codeforces 449D DP+容斥

    Jzzhu and Numbers Time Limit:2000MS     Memory Limit:262144KB     64bit IO Format:%I64d & %I64u ...

  4. LOOPS(hdu 3853)

    题意:迷宫是一个R*C的布局,每个格子中给出停留在原地,往右走一个,往下走一格的概率,起点在(1,1),终点在(R,C),每走一格消耗两点能量,求出最后所需要的能量期望 /* 刚开始以为这就是个**题 ...

  5. 【bzoj4031】[HEOI2015]小Z的房间 && 【bzoj4894】天赋 (矩阵树定理)

    来两道矩阵树模板: T1:[bzoj4031][HEOI2015]小Z的房间 Description 你突然有了一个大房子,房子里面有一些房间.事实上,你的房子可以看做是一个包含n*m个格子的格状矩形 ...

  6. 洛谷P1236 算24点

    题目描述 几十年前全世界就流行一种数字游戏,至今仍有人乐此不疲.在中国我们把这种游戏称为“算24点”.您作为游戏者将得到4个1~9之间的自然数作为操作数,而您的任务是对这4个操作数进行适当的算术运算, ...

  7. poj 2318 TOYS 点与矩形的关系

    题目链接 题意 有一个矩形盒子,\(n(n\leq 5e4)\)条线段将其分成了\(n+1\)个区域(每条线段的两个端点分别在矩形的上边和下边,且线段互不相交).现向盒子中扔\(m(m\leq 5e4 ...

  8. 标准C程序设计七---72

    Linux应用             编程深入            语言编程 标准C程序设计七---经典C11程序设计    以下内容为阅读:    <标准C程序设计>(第7版) 作者 ...

  9. IOS 改变Navigation的返回按钮

    两个办法: 1, 手动为每一个UIViewController添加navigationItem的leftButton的设置代码 2,为UINavigationController实现delegate, ...

  10. poj 1459(网络流)

    Power Network Time Limit: 2000MS   Memory Limit: 32768K Total Submissions: 26688   Accepted: 13874 D ...