Bridges
Bridges
题目描述
YYD为了减肥,他来到了瘦海,这是一个巨大的海,海中有n个小岛,小岛之间有m座桥连接,两个小岛之间不会有两座桥,并且从一个小岛可以到另外任意一个小岛。现在YYD想骑单车从小岛1出发,骑过每一座桥,到达每一个小岛,然后回到小岛1。霸中同学为了让YYD减肥成功,召唤了大风,由于是海上,风变得十分大,经过每一座桥都有不可避免的风阻碍YYD,YYD十分ddt,于是用泡芙贿赂了你,希望你能帮他找出一条承受的最大风力最小的路线。
输入
输入:第一行为两个用空格隔开的整数n(2<=n<=1000),m(1<=m<=2000),
接下来读入m行由空格隔开的4个整数a,b(1<=a,b<=n,a<>b),c,d(1<=c,d<=1000),
表示第i+1行第i座桥连接小岛a和b,从a到b承受的风力为c,从b到a承受的风力为d。
输出
输出:如果无法完成减肥计划,则输出NIE,否则第一行输出承受风力的最大值(要使它最小)
样例输入
4 4
1 2 2 4
2 3 3 4
3 4 4 4
4 1 5 4
样例输出
4
提示

solution
题目不怎么严谨。。。
反正求一条欧拉回路,要求最大边权最小。
欧拉回路
无向图:所有点度数均为偶数且图联通。
有向图:所有点入度等于出度且图联通。
因为答案有单调性首先二分出mid,把大于mid的边拎出来。
这是一张混合图,我们给无向边先随便定一个向。
统计点的入度和出度,如果abs(in-out)&1 那么一定不合法。
因为翻转一条无向边会带来+-2的收益。
我们想怎么去维护欧拉回路。
若in[i]>out[i],则lj(S,i,(in[i]-out[i])/2)
否则lj(i,T,(out[i]-in[i])/2)。
判断最大流是否等于所有(in-out)/2(in>out)即可。
反向边流量我赋值成t3。。真是傻
#include<cstdio>
#include<iostream>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#include<cmath>
#include<queue>
#define maxn 1005
#define inf 1e9
using namespace std;
int n,m,l,r,Max,tot,S,T,head[maxn];
int in[maxn],out[maxn],d[maxn],flag[maxn],cur[maxn];
queue<int>q;
struct node{
int a,b,c,d;
}s[2002];
struct no{
int v,nex,cap;
}e[200005];
void lj(int t1,int t2,int t3){
e[++tot].v=t2,e[tot].cap=t3;e[tot].nex=head[t1];head[t1]=tot;
e[++tot].v=t1,e[tot].cap=0;e[tot].nex=head[t2];head[t2]=tot;
}
bool BFS(){
for(int i=1;i<=T;i++)d[i]=inf;
d[S]=0;q.push(S);
while(!q.empty()){
int x=q.front();q.pop();
cur[x]=head[x];
for(int i=head[x];i;i=e[i].nex){
if(d[e[i].v]>d[x]+1&&e[i].cap>0){
d[e[i].v]=d[x]+1;
if(!flag[e[i].v]){
flag[e[i].v]=1;q.push(e[i].v);
}
}
}
flag[x]=0;
}
return d[T]!=inf;
}
int lian(int k,int a){
if(k==T||!a)return a;
int f,flow=0;
for(int &i=cur[k];i;i=e[i].nex){
if(d[e[i].v]==d[k]+1&&(f=lian(e[i].v,min(e[i].cap,a)))>0){
e[i].cap-=f;e[i^1].cap+=f;
a-=f;flow+=f;
if(!a)break;
}
}
return flow;
}
bool pd(int mid)
{
memset(in,0,sizeof(in));
memset(out,0,sizeof(out));
memset(head,0,sizeof(head));
tot=1;
for(int i=1;i<=m;++i)
{
if(s[i].c<=mid&&s[i].d<=mid){in[s[i].a]++,out[s[i].b]++,lj(s[i].a,s[i].b,1);continue;}
if(s[i].c<=mid)out[s[i].a]++,in[s[i].b]++;
else if(s[i].d<=mid)out[s[i].b]++,in[s[i].a]++;
else return false;
}
S=0;T=n+1;int sum=0,ans=0;
for(int i=1;i<=n;++i)
{
if((in[i]-out[i])%2)return false;
if(in[i]>out[i])lj(S,i,(in[i]-out[i])/2),sum+=(in[i]-out[i])/2;
else lj(i,T,(out[i]-in[i])/2);
}
while(BFS())ans+=lian(S,1e9);
return ans==sum;
}
int main(){
cin>>n>>m;
for(int i=1;i<=m;i++){
scanf("%d%d%d%d",&s[i].a,&s[i].b,&s[i].c,&s[i].d);
}
l=0,r=1005;
while(l<r){
int mid=(l+r)/2;
if(pd(mid))r=mid;
else l=mid+1;
}
if(r==1005)puts("NIE");
else cout<<r<<endl;
return 0;
}
假设定向(u,v)
那么就在网络流的图中连(v,u,1)
有流表示反向
Bridges的更多相关文章
- hdu 4738 Caocao's Bridges 图--桥的判断模板
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- POJ2288 Islands and Bridges
Description Given a map of islands and bridges that connect these islands, a Hamilton path, as we al ...
- HDU 4738 Caocao's Bridges(Tarjan求桥+重边判断)
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- HDU 4738 Caocao's Bridges
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- ZOJ 2588 Burning Bridges(求含重边的无向连通图的割边) - from lanshui_Yang
Burning Bridges Time Limit: 5 Seconds Memory Limit: 32768 KB Ferry Kingdom is a nice little country ...
- zoj 2588 Burning Bridges【双连通分量求桥输出桥的编号】
Burning Bridges Time Limit: 5 Seconds Memory Limit: 32768 KB Ferry Kingdom is a nice little cou ...
- hdoj 4738 Caocao's Bridges【双连通分量求桥】
Caocao's Bridges Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others) ...
- bzoj 2095: [Poi2010]Bridges [混合图欧拉回路]
2095: [Poi2010]Bridges 二分答案,混合图欧拉路判定 一开始想了一个上下界网络流模型,然后发现不用上下界网络流也可以 对于无向边,强制从\(u \rightarrow v\),计算 ...
- Luogu4655 [CEOI2017]Building Bridges
Luogu4655 [CEOI2017]Building Bridges 有 \(n\) 根柱子依次排列,每根柱子都有一个高度.第 \(i\) 根柱子的高度为 \(h_i\) . 现在想要建造若干座桥 ...
- loj#2483. 「CEOI2017」Building Bridges 斜率优化 cdq分治
loj#2483. 「CEOI2017」Building Bridges 链接 https://loj.ac/problem/2483 思路 \[f[i]=f[j]+(h[i]-h[j])^2+(su ...
随机推荐
- Flutter 入坑(1):flutter 环境搭建,window版本
下载安装JAVA环境 1. 既然要做原生应用了,而且是基于Android的,那还是需要我们安装一下JAVA的环境的,我比一般得到一个新系统后首先做的就是这一步. https://www.orac ...
- maven手动导入jar包到本地仓库
一.cmd进入maven的bin目录下(我的目录是E:\cloud_cms\apache-maven-3.5.4\bin) cd E:\cloud_cms\apache-maven-3.5.4\bin ...
- Oracle Analyze
Analyze使用场景 之前很多次都说到,对表的索引等信息进行了增删改之后,需要对表进行analyze更新统计信息,才能使数据库做出最好的执行计划,没有注意到,即使是一张很小的空表,如果进行了字段的增 ...
- MySQL DBA从小白到大神实战
MySQL5.6 For CentOS 6.6 源码编译安装 o1.关闭防火墙o2.配置sysctl.confo3.检查操作系统上是否安装了MySQLo4.下载mysql源码包o5.添加用户和组o6. ...
- 【luogu题解】P1546 最短网络 Agri-Net
题目 约翰已经给他的农场安排了一条高速的网络线路,他想把这条线路共享给其他农场.为了用最小的消费,他想铺设最短的光纤去连接所有的农场. 你将得到一份各农场之间连接费用的列表,你必须找出能连接所有农场并 ...
- 洛谷P1481 魔族密码(LIS)
题意 题目链接 给出一堆字符串,若一个串是另一个串的前缀 ,那么它们可以连接在一起 问最大的链接长度 Sol LIS沙比提其实是做完了才看出是LIS #include<cstdio> #i ...
- Spring+ ApplicationListener
有时候 需要在容器初始化完成后,加载些 代码字典或不常变的信息 放入缓存之类的,这里使用spring 初始化bean,并实例化 1.创建一个ApplicationListener类 import o ...
- 如何查看连接到手机热点的ip地址
因为最近玩树莓派,需要手机做热点,然后用树莓派连接到这个热点上,苦于不知道树莓派被分配了什么样的ip地址,经过一番探索,我发现了两种办法, 安装一个 android terminal( 安卓命令行), ...
- http 高级配置 虚拟主机,https 编译安装
目录 http 高级配置 虚拟主机,https 编译安装 http 重定向 https HSTS HSTS preload list http 自带的工具程序 httpd的压力测试工具 实现状态页 反 ...
- Linux时区修改
Linux修改时区的正确方法 CentOS和Ubuntu的时区文件是/etc/localtime,但是在CentOS7以后localtime以及变成了一个链接文件 [root@centos7 ~]# ...