D. Bag of mice
time limit per test

2 seconds

memory limit per test

256 megabytes

input

standard input

output

standard output

The dragon and the princess are arguing about what to do on the New Year's Eve. The dragon suggests flying to the mountains to watch fairies dancing in the moonlight, while the princess thinks they should just go to bed early. They are desperate to come to
an amicable agreement, so they decide to leave this up to chance.

They take turns drawing a mouse from a bag which initially contains w white and b black
mice. The person who is the first to draw a white mouse wins. After each mouse drawn by the dragon the rest of mice in the bag panic, and one of them jumps out of the bag itself (the princess draws her mice carefully and doesn't scare other mice). Princess
draws first. What is the probability of the princess winning?

If there are no more mice in the bag and nobody has drawn a white mouse, the dragon wins. Mice which jump out of the bag themselves are not considered to be drawn (do not define the winner). Once a mouse has left the bag, it never returns to it. Every mouse
is drawn from the bag with the same probability as every other one, and every mouse jumps out of the bag with the same probability as every other one.

Input

The only line of input data contains two integers w and b (0 ≤ w, b ≤ 1000).

Output

Output the probability of the princess winning. The answer is considered to be correct if its absolute or relative error does not exceed10 - 9.

Sample test(s)
input
1 3
output
0.500000000
input
5 5
output
0.658730159
Note

Let's go through the first sample. The probability of the princess drawing a white mouse on her first turn and winning right away is 1/4. The probability of the dragon drawing a black mouse and not winning on his first turn is 3/4 * 2/3 = 1/2. After this there
are two mice left in the bag — one black and one white; one of them jumps out, and the other is drawn by the princess on her second turn. If the princess' mouse is white, she wins (probability is 1/2 * 1/2 = 1/4), otherwise nobody gets the white mouse, so
according to the rule the dragon wins.

题目大意:

一个袋子里有w个白老鼠,b个黑老鼠,王子和龙依次取。王子先取,先取到白老鼠的为胜者,当中龙取老鼠的时候。取出一仅仅后。会有随机的一仅仅老鼠跑出来,并且取老鼠的时候,每仅仅老鼠取到的概率是一样的,跑出来的概率也是一样的。  让你算王子赢的概率。

思路:

概率DP,用DP[i][j] 表示 白老鼠为i仅仅,黑老鼠为j仅仅时,王子赢的概率,有两个子状态。一个是王子立刻就赢 还有就是王子这把不赢。这把不赢的情况还有两种子情况(保证龙输),一种就是取到一仅仅黑老鼠,跑出一仅仅黑老鼠。另一种就是取到一仅仅黑老鼠,跑出一仅仅白老鼠。

#include <iostream>
#include <cstdio>
#include <cstring>
#include <vector>
using namespace std;
const int maxn = 1000+10;
double dp[maxn][maxn];
bool vis[maxn][maxn];
int w,b;
double dfs(int w,int b){
if(w==0) return 0.0;
if(b==0) return 1.0;
if(vis[w][b]) return dp[w][b];
vis[w][b] = 1;
double res = w*1.0/(w+b);
if(b>=3)
res += (b*1.0/(w+b))*((b-1)*1.0/(w+b-1))*((b-2)*1.0/(w+b-2))*dfs(w,b-3);
if(b>=2&&w>=1)
res += (b*1.0/(w+b))*((b-1)*1.0/(w+b-1))*(w*1.0/(w+b-2))*dfs(w-1,b-2); return dp[w][b] = res;
}
int main(){
memset(vis,0,sizeof vis);
while(~scanf("%d%d",&w,&b)){
printf("%.9lf\n",dfs(w,b));
}
return 0;
}

 

CF148D. Bag of mice(概率DP)的更多相关文章

  1. Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题

    除非特别忙,我接下来会尽可能翻译我做的每道CF题的题面! Codeforces 148D 一袋老鼠 Bag of mice | 概率DP 水题 题面 胡小兔和司公子都认为对方是垃圾. 为了决出谁才是垃 ...

  2. Codeforces Round #105 (Div. 2) D. Bag of mice 概率dp

    题目链接: http://codeforces.com/problemset/problem/148/D D. Bag of mice time limit per test2 secondsmemo ...

  3. CF 148D Bag of mice 概率dp 难度:0

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  4. Bag of mice(概率DP)

    Bag of mice  CodeForces - 148D The dragon and the princess are arguing about what to do on the New Y ...

  5. codeforce 148D. Bag of mice[概率dp]

    D. Bag of mice time limit per test 2 seconds memory limit per test 256 megabytes input standard inpu ...

  6. codeforces 148D Bag of mice(概率dp)

    题意:给你w个白色小鼠和b个黑色小鼠,把他们放到袋子里,princess先取,dragon后取,princess取的时候从剩下的当当中任意取一个,dragon取得时候也是从剩下的时候任取一个,但是取完 ...

  7. Codeforces 148D Bag of mice 概率dp(水

    题目链接:http://codeforces.com/problemset/problem/148/D 题意: 原来袋子里有w仅仅白鼠和b仅仅黑鼠 龙和王妃轮流从袋子里抓老鼠. 谁先抓到白色老师谁就赢 ...

  8. 抓老鼠 codeForce 148D - Bag of mice 概率DP

    设dp[i][j]为有白老鼠i只,黑老鼠j只时轮到公主取时,公主赢的概率. 那么当i = 0 时,为0 当j = 0时,为1 公主可直接取出白老鼠一只赢的概率为i/(i+j) 公主取出了黑老鼠,龙必然 ...

  9. Codeforces Round #105 D. Bag of mice 概率dp

    http://codeforces.com/contest/148/problem/D 题目意思是龙和公主轮流从袋子里抽老鼠.袋子里有白老师 W 仅仅.黑老师 D 仅仅.公主先抽,第一个抽出白老鼠的胜 ...

  10. CF148D Bag of mice (期望dp)

    传送门 # 解题思路 ​    ~~这怕是本蒟蒻第一个独立做出来的期望$dp$的题,发篇题解庆祝一下~~.首先,应该是能比较自然的想出状态设计$f[i][j][0/1]$ 表示当前还剩 $i$个白老鼠 ...

随机推荐

  1. [置顶] python字典和nametuple互相转换例子

    如果tuple中的元素很多的时候操作起来就比较麻烦,有可能会由于索引错误导致出错. namedtuple对象给tuple命名. 下面的例子可以字典和nametuple互相转换 aa={'verbosi ...

  2. uiaotumator ui測试 高速调试

    1. uiaotumator ui測试 Demo.java package uiautomatorDemo1; import java.io.File; import android.graphics ...

  3. appium查找元素心得

    在使用appium测试app的时候并没有selenium那么好用,为什么呢? 个人觉得是因为定位方式太少,selenium中的xpath已经强大到基本可以找到任何一个元素. 但是在appium中xpa ...

  4. Drools的HelloWord例子

    添加drools框架运行的依赖 <!--Drools 规则相关 --> <dependency> <groupId>org.drools</groupId&g ...

  5. C#读取资源文件的两种方法及保存资源文件到本地

    方法1 GetManifestResourceStream   VB.NET中资源的名称为:项目默认命名空间.资源文件名 C#中则是:项目命名空间.资源文件所在文件夹名.资源文件名 例如:istr = ...

  6. Cocos2d-x学习笔记(四) 布景层的加入移除

    布景层类也就是CCLayer类,每一个游戏场景中都能够有非常多层,每一层负责各自的任务.显示地图.显示人物等.同一时候层还是一个容器,能够放入文本.图片和菜单.构成游戏中一个个UI.这次将学习在场景中 ...

  7. 每天一个命令 ls

    默认建立一个目录时初始硬连接数为2若该目录下有几个目录就会再增加几个连接数 ls -li 查看inode信息 ls -al 查看所有文件信息 ls -lR 查看目录下目录下的文件(递归显示目录下的文件 ...

  8. 【Python】切片

    处理Python的部分元素,称之为切片. 创建切片 指定要是用的第一个元素和最后一个元素的索引,与range()函数一样,Python在到达你指定的第二个索引前面的元素后停止. 先定义一个列表vege ...

  9. hint指定index的深入理解

    http://czmmiao.iteye.com/blog/1480247创建一个表,含有位图index和b-tree index SQL> create table t as select o ...

  10. dede列表页调用文章,其实是所有页面都可以调用,第一次应用sql标签

    {dede:sql sql="SELECT aid,typeid,body,userip FROM `#@__addonarticle` where aid='6' or aid='7' o ...