使用Caffe完成图像目标检测 和 caffe 全卷积网络
深度学习(12) 
版权声明:本文为博主原创文章,未经博主允许不得转载。
2. 使用Caffe完成图像目标检测
本节将以一个快速的图像目标检测网络SSD作为例子,通过Python Caffe来进行图像目标检测。
必须安装windows-ssd版本的Caffe,或者自行在caffe项目中添加SSD的新增相关源代码.
图像目标检测网络同图像分类网络的大体原理及结构很相似,不过原始图像再经过深度网络后,并不是得到一组反映不同分类种类下概率的向量,而得到若干组位置信息,其反映不同目标在图像中的位置及相应分类等信息。但与分类网络的总体实施结构是一致的。
关于SSD的原理,可以参见其论文:Liu W, Anguelov D, Erhan D, et al. SSD : Single shot multibox detector[C]. In Proc. European Conference on Computer Vision (ECCV). 2016: 21-37.
2.1 准备文件
deploy.prototxt: 网络结构配置文件VGG_VOC0712_SSD_300x300_iter_60000.caffemodel: 网络权重文件labelmap_voc.prototxt: 数据集分类名称- 测试图像
本文的SSD是在
VOC0712数据集下进行训练的,labelmap_voc.prototxt也是该数据库下的各目标的名称,该文件对于目标检测网络的训练任务是必须的,在下节中,我们将重点介绍如何生成LMDB数据库及Labelmap文件。
2.2 加载网络
加载网络的方法,目标检测网络同目标分类网络都是一致的。
caffe_root = '../../'
# 网络参数(权重)文件
caffemodel = caffe_root + 'models/SSD_300x300/VGG_VOC0712_SSD_300x300_iter_60000.caffemodel'
# 网络实施结构配置文件
deploy = caffe_root + 'models/SSD_300x300/deploy.prototxt'
labels_file = caffe_root + 'data/VOC0712/labelmap_voc.prototxt' # 网络实施分类
net = caffe.Net(deploy, # 定义模型结构
caffemodel, # 包含了模型的训练权值
caffe.TEST) # 使用测试模式(不执行dropout)
2.3 测试图像预处理
预处理主要包含两个部分:
- 减去均值
- 调整大小
# 加载ImageNet图像均值 (随着Caffe一起发布的)
mu = np.load(caffe_root + 'python/caffe/imagenet/ilsvrc_2012_mean.npy')
mu = mu.mean(1).mean(1) # 对所有像素值取平均以此获取BGR的均值像素值 # 图像预处理
transformer = caffe.io.Transformer({'data': net.blobs['data'].data.shape})
transformer.set_transpose('data', (2,0,1))
transformer.set_mean('data', mu)
transformer.set_raw_scale('data', 255)
transformer.set_channel_swap('data', (2,1,0))
2.4 运行网络
- 导入输入数据
- 通过forward()运行结果
# 加载图像
im = caffe.io.load_image(img)
# 导入输入图像
net.blobs['data'].data[...] = transformer.preprocess('data', im)
start = time.clock()
# 执行测试
net.forward()
end = time.clock()
print('detection time: %f s' % (end - start))
2.5 查看目标检测结果
SSD网络的最后一层名为'detection_out',该层输出Blob结构'detection_out'中包含了多组元组结构,每个元组结构包含7个参数,其中第2参数表示分类类别序号,第3个参数表示概率置信度,第4~7个参数分别表示目标区域左上及右下的坐标,而元组的个数表明该图像中可能的目标个数。
当然可能不同网络模型的结构不一样,可能会有不同的设置,但至少对于SSD是这样设置的。
# 查看目标检测结果
# 打开labelmap_voc.prototxt文件
file = open(labels_file, 'r')
labelmap = caffe_pb2.LabelMap()
text_format.Merge(str(file.read()), labelmap)
# 得到网络的最终输出结果
loc = net.blobs['detection_out'].data[0][0]
confidence_threshold = 0.5
for l in range(len(loc)):
if loc[l][2] >= confidence_threshold:
# 目标区域位置信息
xmin = int(loc[l][3] * im.shape[1])
ymin = int(loc[l][4] * im.shape[0])
xmax = int(loc[l][5] * im.shape[1])
ymax = int(loc[l][6] * im.shape[0])
# 画出目标区域
cv2.rectangle(im, (xmin, ymin), (xmax, ymax), (55 / 255.0, 255 / 255.0, 155 / 255.0), 2)
# 确定分类类别
class_name = labelmap.item[int(loc[l][1])].display_name
cv2.putText(im, class_name, (xmin, ymax), cv2.cv.CV_FONT_HERSHEY_SIMPLEX, 1, (55, 255, 155), 2)
2.6 目标检测结果展示

2.7 具体代码下载
GitHub仓库Caffe-Python-Tutorial中的detection.py
项目地址:https://github.com/tostq/Caffe-Python-Tutorial
二、caffe 全卷积网络

版权声明:本文为博主原创文章,未经博主允许不得转载。
论文:Long_Fully_Convolutional_Networks
简介
- 全卷积网络相对于之前的cnn,是对图像中的每个像素点进行分类
- 常用于图像的语义分割中
参考
- https://github.com/shelhamer/fcn.berkeleyvision.org
- 该github的代码是基于caffe实现了voc的分类,而且给出了很多的caffemodel
- https://zhuanlan.zhihu.com/p/22976342
- 本文主要参考,详细介绍了fcn,以及其论文等
测试
- 需要下载
pascalVoc的数据集 下载代码之后,在其根目录下新建py文件如下
import numpy as np
from PIL import Image
import matplotlib.pyplot as plt
caffe_root = '/home/gry/libs/caffe/'
import sys
sys.path.insert(0,caffe_root + 'python/')
import caffe fn = 'data/pascal/VOCdevkit/VOC2012/JPEGImages/2007_000129.jpg'
im = Image.open( fn )
# im = im.resize([500,500],Image.ANTIALIAS)
# im.save("1.jpg","JPEG") npimg = np.array( im, dtype=np.float32 )
print( 'max val of the npimg is : %f'%(npimg.max()) )
npimg -= np.array((104.00698793,116.66876762,122.67891434))
npimg.shape npimg = npimg.transpose( (2,0,1) ) # load net
# net = caffe.Net( 'voc-fcn8s/deploy.prototxt','voc-fcn8s/fcn8s-heavy-pascal.caffemodel', caffe.TEST )
net = caffe.Net( 'voc-fcn16s/deploy.prototxt','voc-fcn16s/fcn16s-heavy-pascal.caffemodel', caffe.TEST )
# shape for input (data blob is N x C x H x W), set data
# note : the H X W is not necessary to be equal with the network H X W
# but the channel must be equal
net.blobs['data'].reshape(1, *npimg.shape)
net.blobs['data'].data[...] = npimg
# net.blobs['data'].data.shape
# run net and take argmax for prediction
net.forward()
out = net.blobs['score'].data[0].argmax(axis=0) plt.imshow(out,cmap='autumn');plt.axis('off')
plt.savefig('test.png')
plt.show()
print('end now')
用不同的caffemodel得到的结果如下
- 原图
- voc-fcn8s
- voc-fcn16s
- voc-fcn32s
- 原图
SegNet
简介
- 基于caffe
参考链接
- https://github.com/alexgkendall/SegNet-Tutorial
- https://github.com/TimoSaemann/caffe-segnet-cudnn5
- https://github.com/alexgkendall/SegNet-Tutorial/blob/master/Example_Models/segnet_model_zoo.md
- https://github.com/alexgkendall/caffe-segnet
*http://mi.eng.cam.ac.uk/projects/segnet/tutorial.html
测试
- 下载基于cudnn5的segnet代码与segnet-tutorial的代码,按照参考链接里的教程组织文件结构
- 修改
trian.txt与test.txt,并3进行训练 - 如果显存超过限制,则需要减小训练的
batchsize - 转换caffemodel并按照教程里的方式进行测试,可以实时显示原图、groudtruth与网络输出图像
- 原代码中使用的是
plt.show(),需要关闭之后才能继续运行,为更方便的显示,可以结合opencv的imshow与waitKey。
使用Caffe完成图像目标检测 和 caffe 全卷积网络的更多相关文章
- caffe框架下目标检测——faster-rcnn实战篇操作
原有模型 1.下载fasrer-rcnn源代码并安装 git clone --recursive https://github.com/rbgirshick/py-faster-rcnn.git 1) ...
- YOLT:将YOLO用于卫星图像目标检测
之前作者用滑动窗口和HOG来进行船体监测,在开放水域和港湾取得了不错的成绩,但是对于不一致的复杂背景,这个方法的性能会下降.为了解决这个缺点,作者使用YOLO作为物体检测的流水线,这个方法相比于HOG ...
- 大尺寸卫星图像目标检测:yoloT
大尺寸卫星图像目标检测:yoloT 1. 前言 YOLT论文全称「You Only Look Twice: Rapid Multi-Scale Object Detection In Satellit ...
- R-FCN:基于区域的全卷积网络来检测物体
http://blog.csdn.net/shadow_guo/article/details/51767036 原文标题为“R-FCN: Object Detection via Region-ba ...
- [DeeplearningAI笔记]卷积神经网络3.1-3.5目标定位/特征点检测/目标检测/滑动窗口的卷积神经网络实现/YOLO算法
4.3目标检测 觉得有用的话,欢迎一起讨论相互学习~Follow Me 3.1目标定位 对象定位localization和目标检测detection 判断图像中的对象是不是汽车--Image clas ...
- 小白也能弄得懂的目标检测YOLO系列之YOLOv1网络训练
上期给大家介绍了YOLO模型的检测系统和具体实现,YOLO是如何进行目标定位和目标分类的,这期主要给大家介绍YOLO是如何进行网络训练的,话不多说,马上开始! 前言: 输入图片首先被分成S*S个网格c ...
- caffe框架下目标检测——faster-rcnn实战篇问题集锦
1.问题 解决方案:没编译好,需要在lib下编译make 需要在caffe-fast-rcnn下编译make或者make all -j16 ,还需要make pycaffe 2.问题 解决方案:/p ...
- 在opencv3中利用SVM进行图像目标检测和分类
采用鼠标事件,手动选择样本点,包括目标样本和背景样本.组成训练数据进行训练 1.主函数 #include "stdafx.h" #include "opencv2/ope ...
- FAIR开源Detectron:整合全部顶尖目标检测算法
昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标检测平台. 昨天,Facebook AI 研究院(FAIR)开源了 Detectron,业内最佳水平的目标 ...
随机推荐
- 用echarts.js制作中国地图,点击对应的省市链接到指定页面
这里使用的是ECharts 2,因为用EChart 3制作的地图上的省市文字标识会有重叠,推测是引入的地图文件china.js,绘制文字的坐标方面的问题,所以,这里还是使用老版本. ECharts 2 ...
- 【CCF】网络延时 树搜索
#include<iostream> #include<cstdio> #include<string> #include<cstring> #incl ...
- wireshark 找不到网卡的解决办法
1. 以管理员身份打开CMD命令行 输入命令:net start npf C:\WINDOWS\system32>net start npf NetGroup Packet Filter Dri ...
- jquery 遍历find()与children()的区别
find():返回被选元素的后代元素.后代是子.孙.曾孙,依此类推. http://blog.csdn.net/zm2714/article/details/8117978 http://www.jb ...
- 不支持模块化规范的插件可以使用import 导入的原因
模块化当中的模块其实是个闭包,然后导出这个闭包,这个是为了解决全局变量污染的问题的. 所以模块当中直接定义的变量 比如 var foo = 0; 这个并不会是全局变量,而是当前模块闭包当中的局部变量 ...
- 【Visual Studio】让用VS2012/VS2013编写的程序在XP中顺利运行(转)
原文转自 http://blog.csdn.net/asanscape/article/details/38752655 微软为了推销自家平台,默认配置下VS2012和VS2013编写的应用程序只能在 ...
- 通过OpenGL ES在iOS平台实践增强现实(二)
上一篇讲到如何使用OpenGL ES绘制一个3D场景,这一篇我们会配合使用iOS提供的CoreMotion框架把虚拟世界中的摄像机的位置朝向和设备实际的位置朝向绑定起来.本文还对防抖做了处理. 首先说 ...
- LeetCode OJ--Merge Two Sorted Lists
http://oj.leetcode.com/problems/merge-two-sorted-lists/ 有序链表的归并排序 #include <iostream> using na ...
- android中添加只有border-left的样式
如何在android中的边框添加只有左边边框有颜色的样式呢 1. 相应的drawable文件 <?xml version="1.0" encoding="utf-8 ...
- java excel导出(基于注解)
小白,做日志只是为了方便自己查看,能帮到别人当然更好,不喜勿喷. 上代码 依赖: <dependency> <groupId>org.apache.poi</groupI ...