每次操作是独立的,而且顺序并不影响,作用在同一个结点上的d可以叠加,所以令x(u) = sigma(dui).

最后就是要确定所有的x(u)。

因为m越大,满足条件的边就越少,二分答案m。

对于一条边a->b,可以列出一个不等式d(a,b) +x(a)-x(b)>=m,移项可得x(b)-x(a)<=d(a,b)-m

正好满足差分约束的形式。所有的边就对应着一个差分约束系统。

差分约束有解的充要条件是不存在负环。

证明:

x(b)-x(a)<=-c,c>0,意味着x(a)至少比x(b)大c,

因为不等式的传递性,如果x(a)在一个负环上,那么意味着x(a)>x(a),这是矛盾的。

因为一开始图不一定连通,可以加一个源点和其他所有点相连,边权为0,用源点的距离表示x(i)的值,

或者sfpa的时候把所有的点加入栈中(判负环用stack比较快)

#include<bits/stdc++.h>
using namespace std; //#define LOCAL
const int maxn = ,maxm = ;
int hd[maxn],nx[maxm],to[maxm],d[maxm];
int n,m; int D[maxn],vis[maxn];
int cnt[maxn]; bool spfa()
{
stack<int>S;
memset(cnt,,sizeof(cnt));
for(int i = ; i <= n; i++) { vis[i] = true; D[i] = .; S.push(i); }
while(S.size()){
int u = S.top(); S.pop();
vis[u] = false;
for(int i = hd[u]; ~i; i = nx[i]){
int v = to[i];
if(D[v]>D[u]+d[i]){
D[v] = D[u]+d[i];
if(!vis[v]){
S.push(v); vis[v] = true;
if(++cnt[v] > n) return true;
}
}
}
}
return false;
}
bool P(int x)
{
for(int i = ; i < m; i++) d[i] -= x;
for(int i = ; i <= n; i++) D[i] = ;
bool fg = spfa();
for(int i = ; i < m; i++) d[i] += x;
return fg;
} int main()
{
#ifdef LOCAL
freopen("in.txt","r",stdin);
#endif
while(~scanf("%d%d",&n,&m)){
memset(hd,-,sizeof(hd));
int l = ,r = ;
for(int i = ; i < m; i++){
int u; scanf("%d%d%d",&u,to+i,d+i);
nx[i] = hd[u];
hd[u] = i;
r = max(r,d[i]);
}
if(P(l)) { puts("No Solution"); continue; }
if(!P(r+)) { puts("Infinite"); continue; }
while(l<r){
int x = (l+r+)>>;
!P(x)?l = x:r = x-;
}
printf("%d\n",l);
}
return ;
}

UVA11478 Halum (差分约束)的更多相关文章

  1. UVA11478 Halum [差分约束系统]

    https://vjudge.net/problem/UVA-11478 给定一个有向图,每条边都有一个权值.每次你可以选择一个结点v和一个整数d,把所有以v为终点的边的权值减小d,把所有以v为起点的 ...

  2. UVA 11478 Halum (差分约束)

    题目链接:https://uva.onlinejudge.org/index.php?option=com_onlinejudge&Itemid=8&page=show_problem ...

  3. UVA 11478 Halum(用bellman-ford解差分约束)

    对于一个有向带权图,进行一种操作(v,d),对以点v为终点的边的权值-d,对以点v为起点的边的权值+d.现在给出一个有向带权图,为能否经过一系列的(v,d)操作使图上的每一条边的权值为正,若能,求最小 ...

  4. Halum UVA - 11478 差分约束

    输入输出格式 输入格式: 输出格式: 输入输出样例 输入样例#1: 复制 2 1 1 2 10 2 1 1 2 -10 3 3 1 2 4 2 3 2 3 1 5 4 5 2 3 4 4 2 5 3 ...

  5. 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束)

    layout: post title: 训练指南 UVA - 11478(最短路BellmanFord+ 二分+ 差分约束) author: "luowentaoaa" catal ...

  6. Candies-POJ3159差分约束

    Time Limit: 1500MS Memory Limit: 131072K Description During the kindergarten days, flymouse was the ...

  7. poj3159 差分约束 spfa

    //Accepted 2692 KB 1282 ms //差分约束 -->最短路 //TLE到死,加了输入挂,手写queue #include <cstdio> #include & ...

  8. ZOJ 2770火烧连营——差分约束

    偶尔做了一下差分约束. 题目大意:给出n个军营,每个军营最多有ci个士兵,且[ai,bi]之间至少有ki个士兵,问最少有多少士兵. ---------------------------------- ...

  9. POJ 2983 Is the Information Reliable? 差分约束

    裸差分约束. //#pragma comment(linker, "/STACK:1024000000,1024000000") #include<cstdio> #i ...

随机推荐

  1. Ubuntu中的minicom

    需要更新一下软件源: sudo apt-get update 安装 在终端中输入sudo apt-get install minicom 配置 输入sudo minicom -s,注意前边一定要加su ...

  2. 2-3 Flutter开发环境与iOS开发环境设置(Mac)

    Mac下环境搭建 先不看了 都是Mac下的环境搭建

  3. MATLAB求解线性规划

  4. 代码修改shader Properties uniform变量

    2.4 Shader的数据接口:属性和 uniform变量     如果我们想设定一个特定的值到Shader,即为了在实例化Shader为Material时,可以通过为属性赋值达到创建具体对象的目的, ...

  5. 小a和uim之大逃离(luogu P1373 dp)

    小a和uim之大逃离(luogu P1373 dp) 给你一个n*m的矩阵,其中元素的值在1~k内.限制只能往下和往右走,问从任意点出发,到任意点结束,且经过了偶数个元素的合法路径有多少个.在此题中, ...

  6. 洛谷P1044 栈(Catalan数)

    P1044 栈 题目背景 栈是计算机中经典的数据结构,简单的说,栈就是限制在一端进行插入删除操作的线性表. 栈有两种最重要的操作,即pop(从栈顶弹出一个元素)和push(将一个元素进栈). 栈的重要 ...

  7. MySQL审计工具Audit Plugin安装使用

    本实验的审计插件均是安装在 mysql-community-server-5.7.9 的服务器上. 插件安装(社区版) 插件下载地址: https://bintray.com/mcafee/mysql ...

  8. webpack4.0介绍与使用(一)

    1:webpack的基本使用: ##在网页中会引用那些静态资源: js, css, images, 字体文件和模板文件(.vue)等 ##网页总引用静态资源多了以后会有那些问题: 网页加载速度慢,因为 ...

  9. Java 基础类库

    与用户互动 1. 运行java程序的参数 public static void main(Stirng[] args) 这个方法是有JVM调用,因此用public static修饰,并且没有返回值,同 ...

  10. Codecraft-17 and Codeforces Round #391 (Div. 1 + Div. 2, combined) C

    It's that time of the year, Felicity is around the corner and you can see people celebrating all aro ...