SG函数

sg[i]为0表示i节点先手必败。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走{1}个石子,剩余{0}个,mex{sg[0]}=mex{0},故sg[1]=1;

x=2时,可以取走{1}个石子,剩余{1}个,mex{sg[1]}=mex{1},故sg[2]=0;

x=3时,可以取走{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}=mex{0,0},故sg[3]=1;

x=4时,可以取走{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}=mex{1,1,0},故sg[4]=2;

x=5时,可以取走{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}=mex{2,0,1},故sg[5]=3;

以此类推.....

x         0  1  2  3  4  5  6  7  8....

sg[x]      0  1  0  1  2  3  2  0  1....

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

  1. 可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
  2. 可选步数为任意步,SG(x) = x;
  3. 可选步数为一系列不连续的数,用GetSG()计算

证明略(不会)

求SG值

1. 打表

//f[]: 可以取走的石子数量
//sg[]: 1~n的sg函数值
//vis[]: mex{}
void getSG(int n) {
memset(sg, , sizeof(sg));
for (int i = ; i <= n; i++) {
memset(vis, , sizeof(vis));
for (int j = ; f[j] <= i && j < maxm; j++)
vis[sg[i - f[j]]] = ;
for (int j = ;; j++) if (!vis[j]) { //最小的未出现的正整数
sg[i] = j;
break;
}
}
}

2. 记忆化搜索

//记忆化搜索
//f[]: 从小到大排序
//sg[]: 初始化为-1
//maxm,石子个数,集合的最大数量
int dp(int x)
{
if (sg[x] != -) return sg[x];
bool vis[maxn];
memset(vis, , sizeof(vis));
for (int i = ; i < maxm; i++)
{
if (f[i] <= x)
{
dp(x - f[i]);
vis[sg[x - f[i]]] = ;
}
}
for (int i = ;; i++)
{
if (!vis[i]) return sg[x] = i;
}
}

HDU 1848

今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;

2、  一共有3堆石子,数量分别是m, n, p个;

3、  两人轮流走;

4、  每走一步可以选择任意一堆石子,然后取走f个;

5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);

6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

代码:

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int maxn = + ;
const int maxm = ; //石子个数 int f[maxm], sg[maxn];
bool vis[maxn];
//f[]: 可以取走的石子数量
//sg[]: 1~n的sg函数值
//vis[]: mex{}
void getSG(int n) {
memset(sg, , sizeof(sg));
for (int i = ; i <= n; i++) {
memset(vis, , sizeof(vis));
for (int j = ; f[j] <= i && j < maxm; j++)
vis[sg[i - f[j]]] = ;
for (int j = ;; j++) if (!vis[j]) { //最小的未出现的正整数
sg[i] = j;
break;
}
}
} //记忆化搜索
//f[]: 从小到大排序
//sg[]: 初始化为-1
//maxm,石子个数,集合的最大数量
int dp(int x)
{
if (sg[x] != -) return sg[x];
bool vis[maxn];
memset(vis, , sizeof(vis));
for (int i = ; i < maxm; i++)
{
if (f[i] <= x)
{
dp(x - f[i]);
vis[sg[x - f[i]]] = ;
}
}
for (int i = ;; i++)
{
if (!vis[i]) return sg[x] = i;
}
} void init()
{
f[] = f[] = ;
for (int i = ; i < maxm; i++)
f[i] = f[i - ] + f[i - ];
memset(sg, -, sizeof(sg));
} int m, n, p; int main()
{
init();
//getSG(1000);
while (scanf("%d%d%d", &n, &m, &p) == && n)
{
if (dp(m) ^ dp(n) ^ dp(p)) printf("Fibo\n");
else printf("Nacci\n");
}
return ;
}

参考链接:

1、https://blog.csdn.net/yizhangbiao/article/details/51992022

2、https://blog.csdn.net/strangedbly/article/details/51137432

SG函数入门&&HDU 1848的更多相关文章

  1. HDU 1848 Fibonacci again and again(SG函数入门)题解

    思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...

  2. SG 函数初步 HDU 1536 &amp;&amp; HDU 1944

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=1944 pid=1536"> http://acm.hdu.edu.cn/showpr ...

  3. sg函数入门理解

    首先理解sg函数必须先理解mex函数 mex是求除它集合内的最小大于等于0的整数,例:mex{1,2}=0:mex{2}=0:mex{0,1,2}=3:mex{0,5}=1. 而sg函数是啥呢? 对于 ...

  4. (巴什博弈 sg函数入门1) Brave Game -- hdu -- 1846

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1846 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则: ...

  5. SG函数入门

    sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2 ...

  6. hdu 1848 简单SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...

  7. hdu 1848 Fibonacci again and again(SG函数)

    Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...

  8. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  9. HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

    Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

随机推荐

  1. starUML建立时序图

    对于经常看项目代码或者写项目的人.时序图可以帮助理解.记录项目.设计项目等用途. 1.starUml下载安装比较简单,这里不再赘述.打开starUml 2. 在Model Explorer 中,在Un ...

  2. Vue+Electron下Vuex的Dispatch没有效果的解决方案

    这个问题是解决基于 vue 和 electron 的开发中使用 vuex 的 dispatch 无效的问题,即解决了 Please, don't use direct commit's, use di ...

  3. Golang : pflag 包简介

    笔者在前文中介绍了 Golang 标准库中 flag 包的用法,事实上有一个第三方的命令行参数解析包 pflag 比 flag 包使用的更为广泛.pflag 包的设计目的就是替代标准库中的 flag ...

  4. IT兄弟连 JavaWeb教程 AJAX常见问题

    1  中文乱码问题 ●  POST提交乱码 乱码原因:所有浏览器对Ajax请求参数都使用UTF-8进行编码,而服务器默认使用ISO-8859-1去解码,所以产生乱码. 解决方法:在服务器接收请求参数前 ...

  5. 剑指Offer的学习笔记(C#篇)-- 合并两个排序的链表

    题目描述 输入两个单调递增的链表,输出两个链表合成后的链表,当然我们需要合成后的链表满足单调不减规则. 一 . 题目分析 根据题意,可得出,该题目要求两个单增的链表合成一条单增的链表. 链表一:1→5 ...

  6. DDD 落地的具体思路

    学习 DDD 的朋友有两种,一种是看 DDD 经典书籍 <领域驱动设计:软件核心复杂性应对之道>完全看不懂,第二种是看啥都懂,都觉得有道理,但总是落不了地. 我们总结一下我们自己落地的思路 ...

  7. 【实验吧】该题不简单——writeup

    题目地址:http://ctf5.shiyanbar.com/crack/3/ 一定要注意读题: 要求找出用户名为hello的注册码,这八成就是 要写注册机啊! ——————————————————— ...

  8. java编写jmeter压测脚本

    目前项目中接触的比较多的是接口测试,功能测个差不多后会对部分接口进行压测,采用的是java编写脚本,导入jmeter进行压测. 使用到的jmeter的相关包 写一个测试类,继承AbstractJava ...

  9. Java基础笔记(六)——进制表示、ASCII码和Unicode编码

    Java中有三种表示整数的方法:十进制.八进制.十六进制. 八进制:以0开头,包括0~7的数字.如:int octal=020;  //定义int型变量存放八进制数据 十六进制:以0x或0X开头,包括 ...

  10. HDU1409 Is It a Number

    http://acm.hdu.edu.cn/showproblem.php?pid=1409 没啥好说的,至今也不知道到底错在哪里了,看了discuss才过的 #include <iostrea ...