SG函数

sg[i]为0表示i节点先手必败。

首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数。例如mex{0,1,2,4}=3、mex{2,3,5}=0、mex{}=0。

对于一个给定的有向无环图,定义关于图的每个顶点的Sprague-Grundy函数g如下:g(x)=mex{ g(y) | y是x的后继 },这里的g(x)即sg[x]

例如:取石子问题,有1堆n个的石子,每次只能取{1,3,4}个石子,先取完石子者胜利,那么各个数的SG值为多少?

sg[0]=0,f[]={1,3,4},

x=1时,可以取走{1}个石子,剩余{0}个,mex{sg[0]}=mex{0},故sg[1]=1;

x=2时,可以取走{1}个石子,剩余{1}个,mex{sg[1]}=mex{1},故sg[2]=0;

x=3时,可以取走{1,3}个石子,剩余{2,0}个,mex{sg[2],sg[0]}=mex{0,0},故sg[3]=1;

x=4时,可以取走{1,3,4}个石子,剩余{3,1,0}个,mex{sg[3],sg[1],sg[0]}=mex{1,1,0},故sg[4]=2;

x=5时,可以取走{1,3,4}个石子,剩余{4,2,1}个,mex{sg[4],sg[2],sg[1]}=mex{2,0,1},故sg[5]=3;

以此类推.....

x         0  1  2  3  4  5  6  7  8....

sg[x]      0  1  0  1  2  3  2  0  1....

计算从1-n范围内的SG值。

f(存储可以走的步数,f[0]表示可以有多少种走法)

f[]需要从小到大排序

  1. 可选步数为1~m的连续整数,直接取模即可,SG(x) = x % (m+1);
  2. 可选步数为任意步,SG(x) = x;
  3. 可选步数为一系列不连续的数,用GetSG()计算

证明略(不会)

求SG值

1. 打表

//f[]: 可以取走的石子数量
//sg[]: 1~n的sg函数值
//vis[]: mex{}
void getSG(int n) {
memset(sg, , sizeof(sg));
for (int i = ; i <= n; i++) {
memset(vis, , sizeof(vis));
for (int j = ; f[j] <= i && j < maxm; j++)
vis[sg[i - f[j]]] = ;
for (int j = ;; j++) if (!vis[j]) { //最小的未出现的正整数
sg[i] = j;
break;
}
}
}

2. 记忆化搜索

//记忆化搜索
//f[]: 从小到大排序
//sg[]: 初始化为-1
//maxm,石子个数,集合的最大数量
int dp(int x)
{
if (sg[x] != -) return sg[x];
bool vis[maxn];
memset(vis, , sizeof(vis));
for (int i = ; i < maxm; i++)
{
if (f[i] <= x)
{
dp(x - f[i]);
vis[sg[x - f[i]]] = ;
}
}
for (int i = ;; i++)
{
if (!vis[i]) return sg[x] = i;
}
}

HDU 1848

今天,又一个关于Fibonacci的题目出现了,它是一个小游戏,定义如下:
1、  这是一个二人游戏;

2、  一共有3堆石子,数量分别是m, n, p个;

3、  两人轮流走;

4、  每走一步可以选择任意一堆石子,然后取走f个;

5、  f只能是菲波那契数列中的元素(即每次只能取1,2,3,5,8…等数量);

6、  最先取光所有石子的人为胜者;

假设双方都使用最优策略,请判断先手的人会赢还是后手的人会赢。

代码:

 #include<cstdio>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int maxn = + ;
const int maxm = ; //石子个数 int f[maxm], sg[maxn];
bool vis[maxn];
//f[]: 可以取走的石子数量
//sg[]: 1~n的sg函数值
//vis[]: mex{}
void getSG(int n) {
memset(sg, , sizeof(sg));
for (int i = ; i <= n; i++) {
memset(vis, , sizeof(vis));
for (int j = ; f[j] <= i && j < maxm; j++)
vis[sg[i - f[j]]] = ;
for (int j = ;; j++) if (!vis[j]) { //最小的未出现的正整数
sg[i] = j;
break;
}
}
} //记忆化搜索
//f[]: 从小到大排序
//sg[]: 初始化为-1
//maxm,石子个数,集合的最大数量
int dp(int x)
{
if (sg[x] != -) return sg[x];
bool vis[maxn];
memset(vis, , sizeof(vis));
for (int i = ; i < maxm; i++)
{
if (f[i] <= x)
{
dp(x - f[i]);
vis[sg[x - f[i]]] = ;
}
}
for (int i = ;; i++)
{
if (!vis[i]) return sg[x] = i;
}
} void init()
{
f[] = f[] = ;
for (int i = ; i < maxm; i++)
f[i] = f[i - ] + f[i - ];
memset(sg, -, sizeof(sg));
} int m, n, p; int main()
{
init();
//getSG(1000);
while (scanf("%d%d%d", &n, &m, &p) == && n)
{
if (dp(m) ^ dp(n) ^ dp(p)) printf("Fibo\n");
else printf("Nacci\n");
}
return ;
}

参考链接:

1、https://blog.csdn.net/yizhangbiao/article/details/51992022

2、https://blog.csdn.net/strangedbly/article/details/51137432

SG函数入门&&HDU 1848的更多相关文章

  1. HDU 1848 Fibonacci again and again(SG函数入门)题解

    思路:SG打表 参考:SG函数和SG定理[详解] 代码: #include<queue> #include<cstring> #include<set> #incl ...

  2. SG 函数初步 HDU 1536 &amp;&amp; HDU 1944

    题目链接:http://acm.hdu.edu.cn/showproblem.php? pid=1944 pid=1536"> http://acm.hdu.edu.cn/showpr ...

  3. sg函数入门理解

    首先理解sg函数必须先理解mex函数 mex是求除它集合内的最小大于等于0的整数,例:mex{1,2}=0:mex{2}=0:mex{0,1,2}=3:mex{0,5}=1. 而sg函数是啥呢? 对于 ...

  4. (巴什博弈 sg函数入门1) Brave Game -- hdu -- 1846

    链接: http://acm.hdu.edu.cn/showproblem.php?pid=1846 首先来玩个游戏,引用杭电课件上的: (1) 玩家:2人:(2) 道具:23张扑克牌:(3) 规则: ...

  5. SG函数入门

    sg[i]为0表示i节点先手必败. 首先定义mex(minimal excludant)运算,这是施加于一个集合的运算,表示最小的不属于这个集合的非负整数.例如mex{0,1,2,4}=3.mex{2 ...

  6. hdu 1848 简单SG函数

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1848 Problem Description 任何一个大学生对菲波那契数列(Fibonacci num ...

  7. hdu 1848 Fibonacci again and again(SG函数)

    Fibonacci again and again HDU - 1848 任何一个大学生对菲波那契数列(Fibonacci numbers)应该都不会陌生,它是这样定义的: F(1)=1; F(2)= ...

  8. HDU 1848 Fibonacci again and again【SG函数】

    对于Nim博弈,任何奇异局势(a,b,c)都有a^b^c=0. 延伸: 任何奇异局势(a1, a2,… an)都满足 a1^a2^…^an=0 首先定义mex(minimal excludant)运算 ...

  9. HDU 1848 Fibonacci again and again (斐波那契博弈SG函数)

    Fibonacci again and again Time Limit: 1000MS   Memory Limit: 32768KB   64bit IO Format: %I64d & ...

随机推荐

  1. Swoole WebSocket 的应用

    目录 概述 代码 小结 概述 这是关于 Swoole 学习的第三篇文章:Swoole WebSocket 的应用. 第二篇:Swoole Task 的应用 第一篇:Swoole Timer 的应用 什 ...

  2. js基础(创建标签)

    创建标签 var divBox1 = document.getElementById('box1'); var p = document.createElement('p'); p.innerHTML ...

  3. Unity开发Android应用优化指南(上)

    http://forum.china.unity3d.com/thread-27037-1-2.html 如今越来越多的开发者使用Unity开发Android及iOS项目,开发过程中难免会遇到一些性能 ...

  4. pytest框架(三)

    pytharm运行三种方式 代码示例: # coding=utf-8 import pytest class TestClass: def test_one(self): x = "this ...

  5. SpringBoot2.0 基础案例(07):集成Druid连接池,配置监控界面

    一.Druid连接池 1.druid简介 Druid连接池是阿里巴巴开源的数据库连接池项目.Druid连接池为监控而生,内置强大的监控功能,监控特性不影响性能.功能强大,能防SQL注入,内置Login ...

  6. link-1-STL 标准模板库

    STL(Standard Template Library,标准模版库)是C++语⾔言标准中的重要组成部分.STL以模板类和模版函数的形式为程序员提供了了各种数据结构和算法的实现,程序员吐过能够充分的 ...

  7. 进击JavaScript核心 --- (1)基本数据类型

    ES5之前提供了 5种基本数据类型 和 1种引用数据类型 基本数据类型:Undefined, Null, String, Number, Boolean 引用数据类型:Object ES6开始引入了一 ...

  8. Tomcat 指定jdk

    Windows 下 修改 tomcat根目录/bin/setclasspath.bat 文件 如下: rem Otherwise either JRE or JDK are fine set JAVA ...

  9. mysql5.6数据库同步,单向双向同步问题

    windows下MySQL5.6实现主从数据库同步数据   mysql5.6数据库同步,单向双向同步问题 一.单向同步 主数据库(mysql5.6)192.168.1.104 从数据库(mysql5. ...

  10. CentOS 7 部署 nginx-1.14.2

    参考:http://www.linuxe.cn/post-168.html 链接:https://pan.baidu.com/s/1NzHIY7mYgHJ6yMF_rdd0ZQ 提取码:n8o9 下载 ...